单选题 (共 3 题 ),每题只有一个选项正确
若 $f(x)=\lim _{n \rightarrow \infty} \int_0^1 \dfrac{n t^{n-1}}{1+\mathrm{e}^{x t}} \mathrm{~d} t$, 则 $\int_0^{+\infty} f(x) \mathrm{d} x=$
$\text{A.}$ $\mathrm{e}^2$.
$\text{B.}$ $1+e$
$\text{C.}$ $\ln (1+e)$.
$\text{D.}$ $\ln 2$.
设 $I_1=\int_0^\pi \mathrm{e}^{-x^2} \cos x \mathrm{~d} x, I_2=\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}} \mathrm{e}^{-x^2} \cos x \mathrm{~d} x, I_3=\int_\pi^{2 \pi} \mathrm{e}^{-x^2} \cos x \mathrm{~d} x$, 则
$\text{A.}$ $I_1 < I_2 < I_3$.
$\text{B.}$ $I_3 < I_2 < I_1$.
$\text{C.}$ $I_2 < I_3 < I_1$.
$\text{D.}$ $I_2 < I_1 < I_3$.
$I_1=\int_0^1 \frac{x}{2(1+\cos x)} d x, I_2=\int_0^1 \frac{\ln 1+x}{1+\cos x} d x, I_3=\int_0^1 \frac{2 x}{1+\sin x} d x$, 则
$\text{A.}$ $I_1 < I_2 < I_3$
$\text{B.}$ $I_2 < I_3 < I_1$
$\text{C.}$ $I_1 < I_3 < I_2$
$\text{D.}$ $I_2 < I_1 < I_3$