2023年第十四届全国大学生数学竞赛决赛(非数学专业)完整试题及参考解答



填空题 (共 5 题 ),请把答案直接填写在答题纸上
极限 $\lim _{x \rightarrow 0} \frac{\arctan x-x}{x-\sin x}=$

设 $a>0$, 则 $\int_0^{+\infty} \frac{x^3}{e^{a x}} \mathrm{~d} x=$

点 $M_0(2,2,2)$ 关于直线 $L: \frac{x-1}{3}=\frac{y+4}{2}=z-3$ 的对称点 $M_1$ 的坐标为

二元函数 $f(x, y)=3 x y-x^3-y^3+3$ 的所有极值的和等于

幂级数 $\sum_{n=1}^{\infty}(-1)^n \frac{1}{n 3^n} x^n$ 的收敛域为

解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
用正交变换将二次曲面的方程
$$
x^2-2 y^2-2 z^2-4 x y+4 x z+8 y z-27=0
$$
化为标准方程, 并说明该曲面是什么曲面.

设函数 $f(x), g(x)$ 在 $(-\infty,+\infty)$ 上具有二阶连续导数, $f(0)=g(0)=1$, 且对 $x O y$ 平面上的任一简单闭曲线 $C$, 曲线积分
$$
\oint_C\left[y^2 f(x)+2 y \mathrm{e}^x-8 y g(x)\right] \mathrm{d} x+2[y g(x)+f(x)] \mathrm{d} y=0,
$$
求函数 $f(x), g(x)$.

求由 $x O z$ 平面上的曲线 $\left\{\begin{array}{l}\left(x^2+z^2\right)^2=4\left(x^2-z^2\right) \\ y=0\end{array}\right.$ 绕 $O z$ 轴 旋转而成的曲面所包围区域的体积.

证明下列不等式:
(1) 设 $x \in[0, \pi], t \in[0,1]$, 则 $\sin t x \geq t \sin x$;
(2) 设 $p>0$, 则 $\int_0^{\frac{\pi}{2}}|\sin u|^p \mathrm{~d} u \geq \frac{\pi}{2(p+1)}$;
(3) 设 $x \geq 0, p>0$, 则 $\int_0^x|\sin u|^p \mathrm{~d} u \geq \frac{x|\sin x|^p}{p+1}$.

设函数 $f(x)$ 在闭区间 $[a, b]$ 上具有一阶连续导数, 证 明: $\int_a^b \sqrt{1+\left[f^{\prime}(x)\right]^2} \mathrm{~d} x \geq \sqrt{(a-b)^2+[f(a)-f(b)]^2}$, 并给出等号成立的条件.

证明级数 $\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{2 n}\right) \cdot \ln \left(1+\frac{1}{2 n+1}\right)$ 收敛, 并求其 和,

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

热点推荐

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。