线性代数基础训练系列(矩阵)



单选题 (共 10 题 ),每题只有一个选项正确
设 $A$ 与 $B$ 为 $n$ 阶方阵, 且 $A B = O$, 则必有
$\text{A.}$ $A = O$ 或 $B = O$. $\text{B.}$ $A B = B A$. $\text{C.}$ $| A |=0$ 或 $| B |=0$. $\text{D.}$ $| A |+| B |=0$.

设 $n$ 阶方阵 $A , B , C$ 满足关系式 $A B C = E$, 其中 $E$ 是 $n$ 阶单位阵, 则必有
$\text{A.}$ $A C B = E$. $\text{B.}$ $C B A = E$. $\text{C.}$ $B A C = E$. $\text{D.}$ $B C A = E$.

设 $A$ 为 $n$ 阶可逆矩阵, $A ^*$ 是 $A$ 的伴随矩阵, 则 $\left| A ^*\right|=$
$\text{A.}$ $| A |^{n-1}$. $\text{B.}$ $| A |$. $\text{C.}$ $| A |^n$. $\text{D.}$ $| A |^{-1}$.

设 $n$ 阶矩阵 $A$ 非奇异 $(n \geq 2), A ^*$ 足矩阵 $A$ 的伴随矩阵, 则
$\text{A.}$ $\left( A ^*\right)^{*}=| A |^{n-1} A$. $\text{B.}$ $\left( A ^*\right)^*=| A |^{n+1} A$. $\text{C.}$ $\left( A ^*\right)^*=| A |^{n-2} A$. $\text{D.}$ $\left( A ^*\right)^*=| A |^{n+2} A$.

设 $A$ 是 3 阶方阵, 将 $A$ 的第 1 列与第 2 列交换得 $B$, 再把 $B$ 的第 2 列加到第 3 列得 $C$, 则满足 $A Q = C$ 的可逆矩阵 $Q$ 为
$\text{A.}$ $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$. $\text{B.}$ $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$. $\text{C.}$ $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right]$. $\text{D.}$ $\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$.

16. 设

$$
A =\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right), B =\left(\begin{array}{llll}
a_{14} & a_{13} & a_{12} & a_{11} \\
a_{24} & a_{23} & a_{22} & a_{21} \\
a_{34} & a_{33} & a_{32} & a_{31} \\
a_{44} & a_{43} & a_{42} & a_{41}
\end{array}\right), P _1=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right),
$$

$P _2=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$, 其中 $A$ 可逆, 则 $B ^{-1}$ 等于
$\text{A.}$ $A ^{-1} P _1 P _2$. $\text{B.}$ $P _1 A ^{-1} P _2$. $\text{C.}$ $P _1 P _2 A ^{-1}$. $\text{D.}$ $P _2 A ^{-1} P _1$.

设 $A$ 是 $m \times n$ 矩阵, $C$ 是 $n$ 阶可逆矩阵, 矩阵 $A$ 的秩为 $r$, 矩阵 $B = A C$ 的秩为 $r_1$,则
$\text{A.}$ $r>r_1$. $\text{B.}$ $r < r_1$. $\text{C.}$ $r=r_1$. $\text{D.}$ $r$ 与 $r_1$ 的关系依 $C$ 而定.

设 $A , B$ 都是 $n$ 阶非零矩阵, 且 $A B = O$, 则 $A$ 和 $B$ 的秩
$\text{A.}$ 必有一个等于零. $\text{B.}$ 都小丁 $n$. $\text{C.}$ 一个小于 $n$, 一个等于 $n$. $\text{D.}$ 都等于 $n$.

设 $n(n \geqslant 3)$ 阶矩阵

$$
A =\left(\begin{array}{ccccc}
1 & a & a & \cdots & a \\
a & 1 & a & \cdots & a \\
a & a & 1 & \cdots & a \\
\vdots & \vdots & \vdots & & \vdots \\
a & a & a & \cdots & 1
\end{array}\right),
$$


若矩阵 $A$ 的秩为 $n-1$, 则 $a$ 必为
$\text{A.}$ 1. $\text{B.}$ $\frac{1}{1-n}$. $\text{C.}$ -1 . $\text{D.}$ $\frac{1}{n-1}$.

设 $A , B$ 为 $n$ 阶矩阵, 记 $r ( X )$ 为矩阵 $X$ 的秩, $( X \quad Y )$ 表示分块矩阵, 则
$\text{A.}$ $r ( A \quad A B )= r ( A )$. $\text{B.}$ $r ( A \quad B A )= r ( A )$. $\text{C.}$ $r ( A \quad B )=\max \{ r ( A ), r ( B )\}$. $\text{D.}$ $r \left(\begin{array}{ll} A & B \end{array}\right)= r \left(\begin{array}{ll} A ^{ T } & B ^{ T }\end{array}\right)$.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

热点推荐

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。