设 $A , B$ 为 $n$ 阶矩阵, 记 $r ( X )$ 为矩阵 $X$ 的秩, $( X \quad Y )$ 表示分块矩阵, 则
$\text{A.}$ $r ( A \quad A B )= r ( A )$.
$\text{B.}$ $r ( A \quad B A )= r ( A )$.
$\text{C.}$ $r ( A \quad B )=\max \{ r ( A ), r ( B )\}$.
$\text{D.}$ $r \left(\begin{array}{ll} A & B \end{array}\right)= r \left(\begin{array}{ll} A ^{ T } & B ^{ T }\end{array}\right)$.