单选题 (共 3 题 ),每题只有一个选项正确
设 $M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1+x^{2}} \cos ^{4} x \mathrm{~d} x, N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\sin ^{3} x+\cos ^{4} x\right) \mathrm{d} x, P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^{2} \sin ^{3} x-\cos ^{4} x\right) \mathrm{d} x$, 则有
$\text{A.}$ $N < P < M$.
$\text{B.}$ $M < P < N$.
$\text{C.}$ $N < M < P$.
$\text{D.}$ $P < M < N$.
设在 $[0,1]$ 上 $f^{\prime \prime}(x)>0$, 则 $f^{\prime}(0), f^{\prime}(1), f(1)-f(0)$ 或 $f(0)-f(1)$ 的大小顺序是
$\text{A.}$ $f^{\prime}(1)>f^{\prime}(0)>f(1)-f(0)$.
$\text{B.}$ $f^{\prime}(1)>f(1)-f(0)>f^{\prime}(0)$.
$\text{C.}$ $f(1)-f(0)>f^{\prime}(1)>f^{\prime}(0)$.
$\text{D.}$ $f^{\prime}(1)>f(0)-f(1)>f^{\prime}(0)$.
下列广义积分收敛的是
$\text{A.}$ $\int_e^{+\infty} \frac{\ln x}{x} \mathrm{~d} x$
$\text{B.}$ $\int_e^{+\infty} \frac{\mathrm{d} x}{x \ln x}$
$\text{C.}$ $\int_e^{+\infty} \frac{\mathrm{d} x}{x(\ln x)^2}$
$\text{D.}$ $\int_e^{+\infty} \frac{\mathrm{d} x}{x \sqrt{\ln x}}$