考研数学
重点科目
其它科目

科数网

10.4测试

数 学

单选题 (共 5 题 ),每题只有一个选项正确
函数 $f(x)=x e^x$ 的带有皮亚诺型余项的 $n$ 阶麦克劳林公式为 ( ).
$\text{A.}$ $x e^x=x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}+o\left(x^n\right)$ $\text{B.}$ $x e^x=x+x^2+\frac{x^3}{2!}+\cdots+\frac{x^n}{(n-1)!}+o\left(x^n\right)$ $\text{C.}$ $x e^x=x+\frac{x^2}{2}+\cdots+\frac{x^n}{n}+o\left(x^n\right)$ $\text{D.}$ $x e^x=x+x^2+\frac{x^3}{2}+\cdots+\frac{x^n}{n-1}+o\left(x^n\right)$

利用泰勒公式,当 $x \rightarrow 0$ 时,$f(x)=1-\cos x \cos 2 x \cos 3 x$ 的等价无穷小为( )。
$\text{A.}$ $5 x^2$ $\text{B.}$ $7 x^2$ $\text{C.}$ $-5 x^2$ $\text{D.}$ $-7 x^2$

设 $f(x), g(x)$ 是恒大于零的可导函数,且 $f^{\prime}(x) g(x)-f(x) g^{\prime}(x) < 0$ ,则当 $a < x < b$ 时,下列结论成立的是( )
$\text{A.}$ $f(x) g(b)>f(b) g(x)$ $\text{B.}$ $f(x) g(a)>f(a) g(x)$ $\text{C.}$ $f(x) g(x)>f(b) g(b)$ $\text{D.}$ $f(x) g(x)>f(a) g(a)$

设 $f(x)=x e^{-x}$ ,则 $f^{(n)}(x)=$
$\text{A.}$ $(-1)^n(1+n) x e^{-x}$ ; $\text{B.}$ $(-1)^n(1-n) x e^{-x}$ ; $\text{C.}$ $(-1)^n(x+n) e^{-x}$ ; $\text{D.}$ $(-1)^n(x-n) e^{-x}$ 。

设 $y=f(x)$ 在点 $x_0$ 的某邻域内具有连续的四阶导数,且 $f^{\prime}\left(x_0\right)=f^{\prime \prime}\left(x_0\right)=f^{\prime \prime \prime}\left(x_0\right)=0, f^{(4)}\left(x_0\right)>0$ ,则
$\text{A.}$ $f(x)$ 在点 $x_0$ 取极小值; $\text{B.}$ 点 $\left(x_0, f\left(x_0\right)\right)$ 为曲线 $y=f(x)$ 的拐点; $\text{C.}$ $f(x)$ 在点 $x_0$ 取极大值; $\text{D.}$ $f(x)$ 在点 $x_0$ 某邻域单调增加。

填空题 (共 1 题 ),请把答案直接填写在答题纸上
已知 $f(a+h)=f(a)+f^{\prime}(a) h+\frac{f^{\prime \prime}(a)}{2} h^2+\cdots+\frac{f^{(n)}(a)}{n!} h^n+\frac{f^{(n+1)}(a+\theta h)}{(n+1)!} h^{n+1}(0 < \theta < 1)$,若 $f^{(n+2)}(x)$ 连续, 且 $f^{(n+2)}(x) \neq 0$, 则 $\lim _{h \rightarrow 0} \theta=$

试卷二维码

分享此二维码到群,让更多朋友参与