填空题 (共 4 题 ),请把答案直接填写在答题纸上
设 $A =\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right), B =\left(\begin{array}{ccc}1 & 2 & 3 \\ -1 & -2 & 4\end{array}\right)$ .则 $A +2 B =$
若矩阵 $A =\left(\begin{array}{ccc}1 & -4 & 2 \\ -1 & 4 & -2\end{array}\right), B =\left(\begin{array}{cc}1 & 2 \\ -1 & 3 \\ 5 & -2\end{array}\right)$ ,则 $A B$ 的第 2 行第 1 列的元素为
已知 $A ^2=\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 4\end{array}\right), A ^5=\left(\begin{array}{ccc}8 & 5 & 0 \\ 5 & 3 & 0 \\ 0 & 0 & -32\end{array}\right)$ ,那么矩阵 $A =$ $\qquad$ .
分块矩阵 $\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{E} \\ \boldsymbol{E} & \boldsymbol{O}\end{array}\right)$ 的逆矩阵为
解答题 (共 2 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
$$
\left(\begin{array}{rrrr}
2 & 1 & 4 & 0 \\
1 & -1 & 3 & 4
\end{array}\right)\left(\begin{array}{rrr}
1 & 3 & 1 \\
0 & -1 & 2 \\
1 & -3 & 1 \\
4 & 0 & -2
\end{array}\right)
$$
$$
\left(x_1, x_2, x_3\right)\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x_1 \\
x_2 \\
x_3
\end{array}\right)
$$