考研数学
重点科目
其它科目

科数网

2026年全国硕士研究生招生考试模拟试题

数 学

单选题 (共 6 题 ),每题只有一个选项正确
设函数 $f(x)$ 可导,$f(0)=2$ ,且 $f^{\prime}(x) < 2 f(x)$ ,则下列结论正确的是().
$\text{A.}$ $f(-1)>2$ $\text{B.}$ $f(-1) < \frac{2}{ e ^2}$ $\text{C.}$ $f(1)>2 e ^2$ $\text{D.}$ $f(1) < 2 e ^2$

反常积分 $\int_0^{+\infty} \frac{\ln x}{1+x^2} d x$
$\text{A.}$ 收敛且等于 0 $\text{B.}$ 收敛且等于 1 $\text{C.}$ 发散 $\text{D.}$ 不能确定敛散性.

设数 $f(x)$ 在区间 $[0,+\infty)$ 上可导,则( ).
$\text{A.}$ 当 $\lim _{x \rightarrow+\infty} f(x)$ 存在时, $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在 $\text{B.}$ 当 $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在时, $\lim _{x \rightarrow+\infty} f(x)$ 存在 $\text{C.}$ 当 $\lim _{x \rightarrow+\infty} \frac{\int_0^x f(t) d t}{x}$ 存在时, $\lim _{x \rightarrow+\infty} f(x)$ 存在 $\text{D.}$ 当 $\lim _{x \rightarrow+\infty} f(x)$ 存在时, $\lim _{x \rightarrow+\infty} \frac{\int_0^x f(t) d t}{x}$ 存在

设有方程 $x f^{\prime \prime}(x)+3 x\left[f^{\prime}(x)\right]^2=1- e ^{-x}, f^{\prime}\left(x_0\right)=0\left(x_0 \neq 0\right)$ ,则
$\text{A.}$ $f\left(x_0\right)$ 为 $f(x)$ 的极大值 $\text{B.}$ $f\left(x_0\right)$ 为 $f(x)$ 的极小值 $\text{C.}$ $\left(x_0, f\left(x_0\right)\right)$ 为 $f(x)$ 的图形的拐点 $\text{D.}$ $f\left(x_0\right)$ 不是极值,$\left(x_0, f\left(x_0\right)\right)$ 也不是拐点

(2) $\int_{-1}^0 d x \int_{-x}^{\sqrt{2-x^2}} f(x, y) d y+\int_0^1 d x \int_x^{\sqrt{2-x^2}} f(x, y) d y=(\quad)$
$\text{A.}$ $\int_0^1 d y \int_{-y}^y f(x, y) d x+\int_1^2 d y \int_{-\sqrt{2-y^2}}^{\sqrt{2-y^2}} f(x, y) d x$ $\text{B.}$ $\int_0^1 d y \int_{-y}^y f(x, y) d x+\int_1^{\sqrt{2}} d y \int_{-\sqrt{2-y^2}}^{\sqrt{2-y^2}} f(x, y) d x$ $\text{C.}$ $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d \theta \int_0^2 f(r \cos \theta, r \sin \theta) r d r$ $\text{D.}$ $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d \theta \int_0^{\sqrt{2}} f(r \cos \theta, r \sin \theta) d r$

一物体按规律 $s=t^2$ 做直线运动, 介质的阻力 $F$ 与速度 $v$ 的平方成正比 $\left(F=k v^2, k\right.$ 是比例常数), 则物体从 $s=0$ 移到 $s=a$ 克服介质阻力所作的功为 ( ).
$\text{A.}$ $\int_0^{\sqrt{a}} 8 k t^3 d t$ $\text{B.}$ $\int_0^a 8 k t^3 d t$ $\text{C.}$ $\int_0^{\sqrt{a}} k v^2 d t$ $\text{D.}$ $\int_0^a k v^2 d t$

试卷二维码

分享此二维码到群,让更多朋友参与