单选题 (共 6 题 ),每题只有一个选项正确
交换积分次序 $\int_{-1}^0 d y \int_{1-y}^2 f(x, y) d x=(\quad)$
$\text{A.}$ $\int_1^2 d x \int_0^{1-x} f(x, y) d y$
$\text{B.}$ $\int_1^2 d x \int_{1-x}^0 f(x, y) d y$
$\text{C.}$ $\int_0^2 d x \int_0^{1-x} f(x, y) d y$
$\text{D.}$ $\int_0^2 d y \int_{1-x}^0 f(x, y) d x$
设函数 $f(x)$ 在 $(-\infty,+\infty)$ 上连续,则 $d\left(\int f(x) d x\right)=$
$\text{A.}$ $f(x)$
$\text{B.}$ $f(x) d x$
$\text{C.}$ $f(x)+C$
$\text{D.}$ $f^{\prime}(x) d x$
设 $k$ 为任意常数, 微分方程 $y^{\prime}=2 x \tan y$ 的通解是
$\text{A.}$ $-\ln \sin y=x^2+k$
$\text{B.}$ $\quad \sin y=k e^{z^2} \quad(k \neq 0)$
$\text{C.}$ $\ln \sin y=k x^2$
$\text{D.}$ $\ln k \sin y=x^2(k>0)$
幂级数 $\sum_1^{\infty} \frac{(x-2)^n}{n}$ 的收敛区间是()。
$\text{A.}$ $[1,3]$
$\text{B.}$ $[1,3)$
$\text{C.}$ $(-1,1)$
$\text{D.}$ $[-1,1)$
关于级数 $\sum_{n=1}^{\infty}(-1)^{n-1} n^p$ 收敛性, 下述结论中正确的是
$\text{A.}$ $0 < p < 1$ 时收敛
$\text{B.}$ $p>1$ 时收敛
$\text{C.}$ $-1 < p < 0$ 时绝对收敛
$\text{D.}$ $p < -1$ 时收敛
设 $D=\left\{(x, y) \mid x^2+y^2 \leqslant 1\right\}$, 则 $\iint_D \frac{ e ^{x^2+y^2}}{2+x y} d x d y=$
$\text{A.}$ 0.
$\text{B.}$ $4 \iint_{D_1} \frac{ e ^{x^2+y^2}}{2+x y} d x d y$, 其中 $D_1=\left\{(x, y) \mid x^2+y^2 \leqslant 1, x \geqslant 0, y \geqslant 0\right\}$.
$\text{C.}$ $4 \iint_{D_2} \frac{ e ^{x^2+y^2}}{2+x y} d x d y$, 其中 $D_2=\left\{(x, y) \mid x^2+y^2 \leqslant 1, x \geqslant 0, y \leqslant 0\right\}$.
$\text{D.}$ $2 \iint_{D_3} \frac{ e ^{x^2+y^2}}{2+x y} d x d y$, 其中 $D_3=\left\{(x, y) \mid x^2+y^2 \leqslant 1, x \geqslant 0\right\}$.