单选题 (共 6 题 ),每题只有一个选项正确
设 $u_n=(-1)^n \ln \left(1+\frac{1}{\sqrt{n}}\right)$, 则级数 $(\quad)$
$\text{A.}$ $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} u_n^2$ 都收敛
$\text{B.}$ $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} u_n^2$ 都发散
$\text{C.}$ $\sum_{n=1}^{\infty} u_n$ 收敛, 而 $\sum_{n=1}^{\infty} u_n^2$ 发散
$\text{D.}$ $\sum_{n=1}^{\infty} u_n$ 发散, 而 $\sum_{n=1}^{\infty} u_n^2$
设 $f(x)$ 在点 $x=a$ 的某个邻域内有定义,则 $f(x)$ 在 $x=a$ 处可导的一个充分条件是()
$\text{A.}$ $\lim _{h \rightarrow+\infty} h\left[f\left(a+\frac{1}{h}\right)-f(a)\right]$ 存在.
$\text{B.}$ $\lim _{h \rightarrow 0} \frac{f(a+2 h)-f(a+h)}{h}$ 存在.
$\text{C.}$ $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h}$ 存在.
$\text{D.}$ $\lim _{h \rightarrow 0} \frac{f(a)-f(a-h)}{h}$ 存在.
设函数 $f(x)$ 连续, 且 $f^{\prime}(0)>0$, 则存在 $\delta>0$, 使得
$\text{A.}$ $f(x)$ 在 $(0, \delta)$ 内单调增加.
$\text{B.}$ $f(x)$ 在 $(-\delta, 0)$ 内单调减少.
$\text{C.}$ 对任意的 $x \in(0, \delta)$, 有 $f(x)>f(0)$.
$\text{D.}$ 对任意的 $x \in(-\delta, 0)$, 有 $f(x)>f(0)$.
设函数 $f(x)$ 在 $x=0$ 的某邻域内连续, 且 $\lim _{x \rightarrow 0} \frac{f(x)}{x \sin x}=-2$,则在 $x=0$ 处 $f(x) $
$\text{A.}$ 不可导.
$\text{B.}$ 可导, 且 $f^{\prime}(0) \neq 0$.
$\text{C.}$ 取极大值.
$\text{D.}$ 取极小值.
由曲线 $y=e^x$ 与直线 $x=1 、 y=1$ 所围成的图形的面积为
$\text{A.}$ $\int_0^1\left(e^x-1\right) d x$
$\text{B.}$ $\int_0^1\left(1-e^x\right) d x$
$\text{C.}$ $\int_0^1 e^x d x$
$\text{D.}$ $\int_0^1\left(e^x+1\right) d x$
在空间直角坐标系下, 下列曲面方程中为平面方程的是
$\text{A.}$ $y-2 x^2=0$
$\text{B.}$ $x^2+y^2-z+1=0$
$\text{C.}$ $2 x+y+6 z+5=0$
$\text{D.}$ $\sin x-x y=0$