考研数学
重点科目
其它科目

科数网

期末复习题库(70题)

数学

单选题 (共 6 题 ),每题只有一个选项正确
函数 $f(x, y)=\sqrt{|x y|}$ 在点 $(0,0)$ 处 $\qquad$
$\text{A.}$ 偏导数不存在 $\text{B.}$ 偏导数存在,但不可微 $\text{C.}$ 可微但偏导数不连续 $\text{D.}$ 偏导数连续

设二元函数 $f(x, y)$ 在点 $\left(x_0, y_0\right)$ 处有定义,则下列说法中,正确的是 $(\quad)$
$\text{A.}$ 若 $\lim _{x \rightarrow x_0} f\left(x, y_0\right), \lim _{y \rightarrow y_0} f\left(x_0, y\right)$ 均存在,则 $\lim _{(x, y) \rightarrow\left(x_0, y_0\right)} f(x, y)$ 存在. $\text{B.}$ 若 $\lim _{x \rightarrow x_0} f\left(x, y_0\right), \lim _{y \rightarrow y_0} f\left(x_0, y\right)$ 均存在,则 $f_x^{\prime}\left(x_0, y_0\right), f_y^{\prime}\left(x_0, y_0\right)$ 均存在. $\text{C.}$ 若 $\lim _{(x, y) \rightarrow\left(x_0, y_0\right)} f(x, y)$ 存在,则 $f_x^{\prime}\left(x_0, y_0\right), f_y^{\prime}\left(x_0, y_0\right)$ 均存在. $\text{D.}$ 若 $f_x^{\prime}\left(x_0, y_0\right), f_y^{\prime}\left(x_0, y_0\right)$ 均存在,则 $\lim _{x \rightarrow x_0} f\left(x, y_0\right), \lim _{y \rightarrow y_0} f\left(x_0, y\right)$ 均存在.

设 $f_1(x, y)=\left\{\begin{array}{ll}\frac{y^2-x y}{\sqrt{x}-\sqrt{y}}, & x \neq y, \\ 0, & x=y,\end{array} f_2(x, y)=\left\{\begin{array}{ll}\frac{x^2 y}{x^4+y^2}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0),\end{array}\right.\right.$ 则

$\text{A.}$ $f_1(x, y), f_2(x, y)$ 在点 $(0,0)$ 处均连续. $\text{B.}$ $f_1(x, y), f_2(x, y)$ 在点 $(0,0)$ 处均不连续. $\text{C.}$ $f_1(x, y)$ 在点 $(0,0)$ 处连续,$f_2(x, y)$ 在点 $(0,0)$ 处不连续. $\text{D.}$ $f_1(x, y)$ 在点 $(0,0)$ 处不连续,$f_2(x, y)$ 在点 $(0,0)$ 处连续.

设 $f(x, y)=\left\{\begin{array}{l}\left(x^2+y^2\right) \sin \frac{1}{x^2+y^2}, x^2+y^2 \neq 0 \\ 0, x^2+y^2=0\end{array}\right.$ ,则在点 $(0,0)$ 处 $f(x, y)$
$\text{A.}$ 两个偏导数不存在 $\text{B.}$ 两个偏导数存在,但不为 0 $\text{C.}$ 可微 $\text{D.}$ 不可微

设 $z=f(x, y)$ 在点 $P\left(x_0, y_0\right)$ 处两个偏导数均存在是 $z=f(x, y)$ 在点 $P\left(x_0, y_0\right)$ 处可微的
$\text{A.}$ 必要而非充分条件 $\text{B.}$ 充分而非必要条件 $\text{C.}$ 充要条件 $\text{D.}$ 既非充分又非必要条件

二元函数 $f(x, y)$ 在点 $(0,0)$ 处可微的一个充分条件是
$\text{A.}$ $\lim _{(x, y) \rightarrow(0,0)}[f(x, y)-f(0,0)]=0$ $\text{B.}$ $\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)]}{x}=0$ ,且 $\lim _{y \rightarrow 0} \frac{f(0, y)-f(0,0)]}{y}=0$ $\text{C.}$ $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)}{\sqrt{x^2+y^2}}=0$ $\text{D.}$ $\lim _{x \rightarrow 0}\left[f_x(x, 0)-f_x(0,0)\right]=0$ ,且 $\lim _{y \rightarrow 0}\left[f_y(0, y)-f_y(0,0)\right]=0$

试卷二维码

分享此二维码到群,让更多朋友参与