考研数学
重点科目
其它科目

科数网

1

数学

单选题 (共 3 题 ),每题只有一个选项正确
已知 $\boldsymbol{n}$ 阶矩阵 $A, B, C$ 满足 $A B C=O, E$ 为 $\boldsymbol{n}$ 阶单位矩阵.记矩阵 $\left(\begin{array}{cc}O & A \\ B C & E\end{array}\right),\left(\begin{array}{cc}A B & C \\ O & E\end{array}\right),\left(\begin{array}{cc}E & A B \\ A B & O\end{array}\right)$ 的秩分别为 $r_1, r_2, r_3$ ,则( )
$\text{A.}$ $r_1 \leq r_2 \leq r_3$ $\text{B.}$ $r_1 \leq r_3 \leq r_2$ $\text{C.}$ $r_3 \leq r_2 \leq r_1$ $\text{D.}$ $r_2 \leq r_1 \leq r_3$

下列矩阵中不能相似于对角矩阵的是 ( )
$\text{A.}$ $\left(\begin{array}{lll}1 & 1 & a \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right)$ $\text{B.}$ $\left(\begin{array}{lll}1 & 1 & a \\ 1 & 2 & 0 \\ a & 0 & 3\end{array}\right)$ $\text{C.}$ $\left(\begin{array}{lll}1 & 1 & a \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$ $\text{D.}$ $\left(\begin{array}{lll}1 & 1 & a \\ 0 & 2 & 2 \\ 0 & 0 & 2\end{array}\right)$

已知向量 $\alpha_1=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right), \alpha_2=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right), \beta_1=\left(\begin{array}{l}2 \\ 5 \\ 9\end{array}\right), \beta_2=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$, 若 $\gamma$既可由 $\alpha_1, \alpha_2$ 线性表示,也可由 $\beta_1, \beta_2$ 线性表示,则 $\gamma=$ ( )
$\text{A.}$ $k\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right), k \in \mathbf{R}$ $\text{B.}$ $k\left(\begin{array}{c}\mathbf{3} \\ 5 \\ 10\end{array}\right), k \in \mathbf{R}$ $\text{C.}$ $k\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right), k \in \mathbf{R}$ $\text{D.}$ $k\left(\begin{array}{l}1 \\ 5 \\ 8\end{array}\right), k \in \mathbf{R}$

填空题 (共 1 题 ),请把答案直接填写在答题纸上
已知向量 $\alpha_1=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right), \alpha_2=\left(\begin{array}{c}-1 \\ -1 \\ 0 \\ 1\end{array}\right), \alpha_3=\left(\begin{array}{c}0 \\ 1 \\ -1 \\ 1\end{array}\right), \beta=\left(\begin{array}{c}1 \\ 1 \\ 1 \\ 1\end{array}\right)$, $\gamma=k_1 \alpha_1+k_2 \alpha_2+k_3 \alpha_3$. 若 $\gamma^T \alpha_1=\beta^T \alpha_i(i=1,2,3)$ ,则 $k_1^2+k_2^2+k_3^2=$

解答题 (共 1 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
已知二次型

$$
\begin{gathered}
f\left(x_1, x_2, x_3\right)=x_1^2+2 x_2^2+2 x_3^2+2 x_1 x_2-2 x_1 x_3 \\
g\left(y_1, y_2, y_3\right)=y_1^2+y_2^2+y_3^2+2 y_2 y_3
\end{gathered}
$$

(1) 求可逆变换 $x=P y$ 将 $f\left(x_1, x_2, x_3\right)$ 化成 $g\left(y_1, y_2, y_3\right)$ ;
(2) 是否存在正交变换 $x=Q y$ 将 $f\left(x_1, x_2, x_3\right)$ 化成 $g\left(y_1, y_2, y_3\right)$ ?

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与