考研数学
重点科目
其它科目

科数网

2

数学

单选题 (共 6 题 ),每题只有一个选项正确
设 $a_1=x(\cos \sqrt{x}-1), a_2=\sqrt{x} \ln (1+\sqrt[3]{x})$, $a_3=\sqrt[3]{x+1}-1$. 当 $x \rightarrow 0^{+}$时,以上 3 个无穷小量按照从低阶到高阶的排序是
$\text{A.}$ $a_1, a_2, a_3$ $\text{B.}$ $a_2, a_3, a_1$ $\text{C.}$ $a_2, a_1, a_3$ $\text{D.}$ $a_3, a_2, a_1$

已知函数 $f(x)=\left\{\begin{array}{cc}2(x-1), & x < 1, \\ \ln x, & x \geq 1,\end{array}\right.$ 则 $f(x)$ 的一个原函数为
$\text{A.}$ $F(x)=\left\{\begin{array}{l}(x-1)^2, x < 1 \\ x(\ln x-1), x \geq 1\end{array}\right.$ $\text{B.}$ $F(x)=\left\{\begin{array}{l}(x-1)^2, x < 1, \\ x(\ln x+1)-1, x \geq 1\end{array}\right.$ $\text{C.}$ $F(x)=\left\{\begin{array}{l}(x-1)^2, x < 1, \\ x(\ln x+1)+1, x \geq 1\end{array}\right.$ $\text{D.}$ $F(x)=\left\{\begin{array}{l}(x-1)^2, x < 1, \\ x(\ln x-1)+1, x \geq 1\end{array}\right.$

反常积分(1) $\int_{-\infty}^0 \frac{1}{x^2} e^{\frac{1}{x}} \mathrm{~d} x$, (2) $\int_0^{+\infty} \frac{1}{x^2} e^{\frac{1}{x}} \mathrm{~d} x$ 的敛散性为
$\text{A.}$ (1)收敛(2)收敛 $\text{B.}$ (1)收敛(2)发散 $\text{C.}$ (1)收敛(2)收敛 $\text{D.}$ (1)发散(2)发散

设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内连续,其导函数的图形如图所示, 则
$\text{A.}$ 函数 $f(x)$ 有 2 个极值点,曲线 $y=f(x)$ 有 2 个拐点 $\text{B.}$ 函数 $f(x)$ 有 2 个极值点,曲线 $y=f(x)$ 有 3 个拐点 $\text{C.}$ 函数 $f(x)$ 有 3 个极值点,曲线 $y=f(x)$ 有 1 个拐点 $\text{D.}$ 函数 $f(x)$ 有 3 个极值点,曲线 $y=f(x)$ 有 2 个拐点

设函数 $f_i(x)(i=1,2)$ 具有二阶连续导数,且 $f_i^{\prime \prime}\left(x_0\right) < 0(i=1,2)$ ,若两条曲线 $y=f_i(x)(i=1,2)$ 在点 $\left(x_0, y_0\right)$ 处具有公切线 $y=g(x)$ ,且在该点处曲线 $y=f_1(x)$ 的曲率大于曲率 $y=f_2(x)$ 的曲率,则在 $x_0$ 的某个邻域内,有
$\text{A.}$ $f_1(x) \leq f_2(x) \leq g(x)$ $\text{B.}$ $f_2(x) \leq f_1(x) \leq g(x)$ $\text{C.}$ $f_1(x) \leq g(x) \leq f_2(x)$ $\text{D.}$ $f_2(x) \leq g(x) \leq f_1(x)$

已知函数 $f(x, y)=\frac{e^x}{x-y}$ ,则
$\text{A.}$ $f_x{ }^{\prime}-f_y^{\prime}=0$ $\text{B.}$ $f_x{ }^{\prime}+f_y^{\prime}=0$ $\text{C.}$ $f_x^{\prime}-f_y^{\prime}=f$ $\text{D.}$ $f_x^{\prime}+f_y^{\prime}=f$

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与