一、填空题 (共 35 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
$\lim _{x \rightarrow 0}\left[\frac{1}{e^x-1}-\frac{1}{\ln (1+x)}\right]=$
设 $\left\{\begin{array}{c}x=\sqrt{t^2+1} \\ y=\ln \left(t+\sqrt{t^2+1}\right)\end{array}\right.$, 则 $\left.\frac{d^2 y}{d x^2}\right|_{t=1}=$
已知 $f^{\prime}(1)=8$, 则 $\lim _{x \rightarrow 0} \frac{f\left(1-x^2\right)-f(1)}{1-\cos x}=$
设 $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cl}\mathrm{e}^{\mathrm{x}}(\sin \mathrm{x}+\cos \mathrm{x}) & \mathrm{x} \geq 0 \\ \operatorname{b \arctan} \frac{1}{\mathrm{x}} & \mathrm{x} < 0\end{array}\right.$ 是连续函数, 则 $\mathrm{b}=$
设函数 $\mathrm{f}(\mathrm{x})$ 在 $(-\infty,+\infty)$ 上连续,求 $\frac{d}{d x} \int_0^x t f\left(t^2-x^2\right) d t $
已知函数 $f(x)=\left\{\begin{array}{lc}(1-x)^{\frac{1}{x}}, & x \neq 0 \\ a, & x=0\end{array}\right.$ 在 $x=0$ 处连续, 则 $a=$
已知方程 $\mathrm{e}^x=k x$ 有且仅有一个实根, 则 $k$ 的取值范围为
极限 $\lim _{x \rightarrow \infty} \frac{x^2+\cos ^3 x-1}{(x+\sin x)^2}=$
极限 $\lim _{n \rightarrow \infty}\left(\frac{2}{\sqrt{n^2+1}}+\frac{2}{\sqrt{n^2+2}}+\cdots+\frac{2}{\sqrt{n^2+n}}\right)=$
设函数 $y=\ln \tan \sqrt{x}$, 则 $d y=$
设 $f(x, y)= \begin{cases}\mathrm{e}^{x^2+y^2} \frac{\sin \sqrt{x^2+y^2}}{\sqrt{x^2+y^2}}, & x^2+y^2 \neq 0, \\ 1, & x^2+y^2=0, x^2+y^2 \leqslant t^2,\end{cases}$ 则 $\lim _{t \rightarrow 0^{+}} \frac{1}{\pi t^2} \iint_D f(x, y) \mathrm{d} x \mathrm{~d} y=$
设 $f(x)=\lim _{n \rightarrow \infty} \frac{x+\mathrm{e}^{n x}}{1+\mathrm{e}^{n x}}$, 则 $f(x-1)$ 的间断点为
设连续函数 $f(x, y)$ 满足 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)-x-2 y-1}{x^2+y^2}=1$, 则 $\lim _{h \rightarrow 0} \frac{f(3 h, 0)-f(0, h)}{h}=$
方程 $\sum_{i=1}^{100} \frac{1}{x-i}=0$ 实根的个数为
极限 $\lim _{x \rightarrow 1} \frac{x^3-1}{x-1}=$
若 $x^2-a \sin x$ 和 $x$ 是 $x \rightarrow 0$ 时的等价无穷小, 则 $a=$.
设 $f(x)$ 在 $x=0$ 处可导, 且 $f(0)=0, f^{\prime}(0)=9$, 则 $\lim _{x \rightarrow 0} \frac{f(x)}{3 x}=$
曲线 $y=\arctan \frac{1}{x}$ 在点 $\left(1, \frac{\pi}{4}\right)$ 的切线方程为
设 $\left\{\begin{array}{c}x=t e^t, \\ y=\sin 2 t,\end{array}\right.$ 则导数 $\left.\frac{d y}{d x}\right|_{t=0}=$
设 $f(x)=(x-1)(x-3)^3(x-5)^5(x-7)^7$, 则 $f^{\prime \prime \prime \prime}(3)=$
设 $f(x)$ 在 $[0,+\infty)$ 上可导, 且 $f(0)=0$, 其反函数为 $g(x)$, 满足
$$
\int_0^{f(x)} g(t) \mathrm{d} t=(x-1) \mathrm{e}^x+x^2+1,
$$
则 $f(x)$ 的表达式为 $f(x)=$
已知 $f(x)=x^2 \ln \left(1-x^2\right)$, 当 $n$ 为大于 2 的正整数时, 则 $f^{(n)}(0)=$
$y=\left(x^2-5 x+6\right)\left|x^3-3 x^2+2 x\right|$ 的不可导点的个数为 ________ 个
若方程组 $\left\{\begin{array}{l}x=t e^{-t} \\ \int_1^{y-x} \sin ^2\left(\frac{\pi}{4} u\right) d u=t\end{array}\right.$ 可确定 $y$ 是 $x$ 的函数 $y=y(x)$, 则 $\left.\frac{d y}{d x}\right|_{t=0}=$ ?
已知常数 $a>0, b c \neq 0$, 使得 $\lim _{x \rightarrow+\infty}\left[x^a \ln \left(1+\frac{b}{x}\right)-x\right]=c$, 求 $a, b, c$.
函数 $f(x)=\frac{\sqrt{1+2 x}-1}{x(x+1)(x-2)}$ 的无穷间断点为 ________ , $\lim _{x \rightarrow 0} f(x)=$
函数 $f(x)=\frac{x}{\tan x}, x=k \pi$ 和 $x=k \pi+\frac{\pi}{2} \quad$ ( $k$ 是整数 $)$ 是间断点, 其中无穷间 断点是 ________
若 $x \rightarrow 0$ 时,函数 $\cos x-\frac{c+9 x^2}{c+4 x^2}$ 是 $x^2$ 的高阶无穷小,则 $c=$
函数 $f(x)=\frac{x^2-x}{x^2-1} \sqrt{1+\frac{1}{x^2}}$ 的无穷间断点的个数为
已知极限 $\lim _{x \rightarrow 0}\left[a x \ln \left(1+\mathrm{e}^{\frac{1}{x}}\right)-\operatorname{arccot} \frac{1}{x}\right]$ 存在, 则 $a=$
曲线 $y=x \sin x+2 \cos x\left(-\frac{\pi}{2} < x < 2 \pi\right)$ 的拐点是
已知 $x=0$ 是 $f(x)=\frac{x+b \ln (1+x)}{a x-\sin x}$ 的可去间断点,求 $a, b$ 的取值范围
写出 $f(x)=\lim _{n \rightarrow+\infty} \frac{1+x}{1+x^{2 n}}$ 的所有间断点及其所属类型
设函数 $y=f(x)$ 二阶可导,且满足 $y^{\prime}=(5-y) y^a$, 其中常数 $a>0$, 点 $\left(x_0, 3\right)$ 为曲线 $y=f(x)$ 的拐点, 则 $a=$
求函数 $y=2 x-\ln (4 x)^2$ 的单调递增区间为