单选题 (共 6 题 ),每题只有一个选项正确
设函数 $f(x)$ 在闭区间 $[a, b]$ 上连续,且 $f(x)>0$ ,则方程 $\int_a^x f(t) \mathrm{d} t+\int_b^x \frac{1}{f(t)} \mathrm{d} t=0$ 在开区间 $(a, b)$ 内的根有
$\text{A.}$ 0个
$\text{B.}$ 1个
$\text{C.}$ 2个
$\text{D.}$ 无穷多个
设函数 $f(x)$ 在 $[0,1]$ 上 $f^{\prime \prime}(x)>0$ ,则 $f^{\prime}(0), f^{\prime}(1)$, $f(1)-f(0)$ 和 $f(0)-f(1)$ 的大小顺序是
$\text{A.}$ $f^{\prime}(1)>f^{\prime}(0)>f(1)-f(0)$
$\text{B.}$ $f^{\prime}(1)>f(1)-f(0)>f^{\prime}(0)$
$\text{C.}$ $f(1)-f(0)>f^{\prime}(1)>f^{\prime}(0)$
$\text{D.}$ $f^{\prime}(1)>f(0)-f(1)>f^{\prime}(0)$
在区间 $(-\infty, \infty)$ 内,方程 $|x|^{\frac{1}{4}}+|x|^{\frac{1}{2}}-\cos x=0$
$\text{A.}$ 无实根
$\text{B.}$ 有且仅有一个实根
$\text{C.}$ 有且仅有二个实根
$\text{D.}$ 有无穷多个实根
设 $f(x)=\left\{\begin{array}{ll}\frac{1-\cos x}{\sqrt{x}} & x>0 \\ x^2 g(x) & x \leq 0\end{array}\right.$ ,其中 $g(x)$ 是有界函数,则 $f(x)$ 在 $x=0$ 处
$\text{A.}$ 极限不存在
$\text{B.}$ 极限存在但不连续
$\text{C.}$ 连续但不可导
$\text{D.}$ 可导
设函数 $f(x)$ 满足关系式 $f^{\prime \prime}(x)+\left[f^{\prime}(x)\right]^2=x$ ,且 $f^{\prime}(0)=0$ ,则
$\text{A.}$ $f(0)$ 是 $f(x)$ 的极大值
$\text{B.}$ $f(0)$ 是 $f(x)$ 的极小值
$\text{C.}$ 点 $(0, f(0))$ 是曲线 $y=f(x)$ 的拐点
$\text{D.}$ $f(0)$ 不是 $f(x)$ 的极值,点 $(0, f(0))$ 不是曲线 $y=f(x)$ 的拐点
设 $f(x), g(x)$ 是恒大于零的可导函数,且 $f^{\prime}(x) g(x)-f(x) g^{\prime}(x) < 0 ,$ 则当 $a < x < b$ 时,有
$\text{A.}$ $f(x) g(b)>f(b) g(x)$
$\text{B.}$ $f(x) g(a)>f(a) g(x)$
$\text{C.}$ $f(x) g(x)>f(b) g(b)$
$\text{D.}$ $f(x) g(x)>f(a) g(a)$