一、单选题 (共 6 题,每小题 10分,共 60 分,每题只有一个选项正确)
设 $I=\int \arctan x \mathrm{~d} x$, 则 $I=$.
$\text{A.}$ $x \arctan x-\ln \sqrt{x^2+1}+C$
$\text{B.}$ $x \arctan x-\ln \left|x^2+1\right|+C$
$\text{C.}$ $x \arctan x+\frac{1}{2}\left(x^2+1\right)+C$.
$\text{D.}$ $\frac{1}{1+x^2}+C$.
若 $f(x)$ 的导函数是 $\sin x$, 则 $f(x)$ 有一个原函数为
$\text{A.}$ $1+\sin x$.
$\text{B.}$ $1-\sin x$.
$\text{C.}$ $1+\cos x$.
$\text{D.}$ $1-\cos x$.
设 $f(x)=\lim _{n \rightarrow \infty}(x-1) \arctan |x|^n$, 则
$\text{A.}$ $x=-1$ 为 $f(x)$ 的第一类间断点.
$\text{B.}$ $x=1$ 为 $f(x)$ 的第一类间断点.
$\text{C.}$ $x=-1$ 为 $f(x)$ 的第二类间断点.
$\text{D.}$ $x=1$ 为 $f(x)$ 的第二类间断点.
设函数 $y=y(x)$ 由方程 $\ln \left(x^2+y^2\right)=\arctan \frac{y}{x}$ 确定, 且满足 $y(1)=0$, 则 $y^{\prime \prime}(1)=$ ( )
$\text{A.}$ 0
$\text{B.}$ $\frac{1}{2}$.
$\text{C.}$ 10
$\text{D.}$ 20
设 $f(x)$ 满足 $\lim _{x \rightarrow 0} \frac{\sqrt{1+f(x) \sin 2 x}-1}{e^{x^2}-1}=1$, 则
$\text{A.}$ $f(0)=0$
$\text{B.}$ $\lim _{x \rightarrow 0} f(x)=0$
$\text{C.}$ $f^{\prime}(0)=1$
$\text{D.}$ $\lim _{x \rightarrow 0} f^{\prime}(x)=1$
设函数 $f(x)$ 满足 $f(0)=0$, 则 $f(x)$ 在 $x=0$ 处可导的充分必要条件为
$\text{A.}$ $\lim _{h \rightarrow 0} \frac{f(\tan h-h)}{h^3}$ 存在.
$\text{B.}$ $\lim _{h \rightarrow 0} \frac{f(\ln (1+h)-h)}{h^2}$ 存在.
$\text{C.}$ $\lim _{h \rightarrow 0} \frac{f(\arctan h-h)}{h}$ 存在.
$\text{D.}$ $\lim _{h \rightarrow 0} \frac{f(h)-f(-h)}{h}$ 存在.
二、填空题 (共 2 题, 每小题 10 分,共 20 分, 请把答案直接填写在答题纸上)
设 $\int f(x) d x=\sin 2 x+c$, 则 $f(x)=$
已知 $e^{-x}$ 是 $f(x)$ 的一个原函数, 则 $\int x^2 f(\ln x) d x=$
三、解答题 ( 共 2 题,满分 20 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
计算 $\int \frac{1}{\sqrt{\left(1-x^2\right)^3}} \mathrm{~d} x$.
设 $f(x)$ 的一个原函数为 $\frac{\sin x}{x}$, 求 $\int x f^{\prime}(2 x) \mathrm{d} x$.