考研数学
重点科目
其它科目

科数网

线性代/高等代数/二次型与标准型

数学

单选题 (共 6 题 ),每题只有一个选项正确
设二次型 $f\left(x_1, x_2, x_3\right)=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}=x_1^2+5 x_2^2+x_3^2-4 x_1 x_2+2 x_2 x_3$, 则对任意的三维向量 $\boldsymbol{x}=\left(x_1, x_2, x_3\right)^{\mathrm{T}} \neq \mathbf{0}$, 均有
$\text{A.}$ $f\left(x_1, x_2, x_3\right)>0$. $\text{B.}$ $f\left(x_1, x_2, x_3\right) \geqslant 0$. $\text{C.}$ $f\left(x_1, x_2, x_3\right) < 0$. $\text{D.}$ $f\left(x_1, x_2, x_3\right) \leqslant 0$.

设二次型 $f\left(x_1, x_2, x_3\right)=x_1^2+x_3^2-2 x_1 x_2+2 a x_1 x_3+2 a^2 x_2 x_3$, 则二次曲面 $f\left(x_1, x_2, x_3\right)=1$ 在可逆线性变换下不可能化为
$\text{A.}$ 单叶双曲面. $\text{B.}$ 双叶双曲面. $\text{C.}$ 椭圆柱面. $\text{D.}$ 双曲柱面.

设 3 阶实对称矩阵 $\boldsymbol{A}=\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\right), \boldsymbol{\alpha}_1-\boldsymbol{\alpha}_2+\boldsymbol{\alpha}_3=(1,-1,1)^{\mathrm{T}}, \boldsymbol{A}^3+\left(a^5-1\right) \boldsymbol{A}^2+2 a^3 \boldsymbol{A}$ $+a E=O$, 且 $\operatorname{tr}(\boldsymbol{A})=1$, 则 $\boldsymbol{A x}=\mathbf{0}$ 的通解为
$\text{A.}$ $k(1,1,0)^{\mathrm{T}}$, 其中 $k$ 为任意常数. $\text{B.}$ $k(1,0,-1)^{\mathrm{T}}$, 其中 $k$ 为任意常数. $\text{C.}$ $k(1,1,0)^{\mathrm{T}}+l(1,0,-1)^{\mathrm{T}}$, 其中 $k, l$ 为任意常数. $\text{D.}$ $k(1,-1,1)^{\mathrm{T}}+l(1,0,-1)^{\mathrm{T}}$, 其中 $k, l$ 为任意常数.

设二次型 $f\left(x_1, x_2, x_3\right)=x_1^2+2 x_2^2+a x_3^2-4 x_1 x_2-4 x_2 x_3$ 经正交变换化为标准形 $f=2 y_1^2+5 y_2^2+$ $b y_3^2$, 则
$\text{A.}$ $a=3, b=1$ $\text{B.}$ $a=3, b=-1$ $\text{C.}$ $a=-3, b=1$ $\text{D.}$ $a=-3, b=-1$

二次型 $f\left(x_1, x_2, x_3\right)=x_1^2+4 x_2^2+4 x_3^2-4 x_1 x_2+4 x_1 x_3-8 x_2 x_3$ 的规范形是
$\text{A.}$ $z_1^2+z_2^2+z_3^2$ $\text{B.}$ $z_1^2-z_2^2-z_3^2$ $\text{C.}$ $z_1^2-z_2^2$ $\text{D.}$ $z_1^2$

设二次型 $f\left(x_1, x_2, x_3\right)=3 x_3^2-2 x_1 x_2+4 x_1 x_3-4 x_2 x_3$, 则 $f\left(x_1, x_2, x_3\right)=2$ 在空间直角坐标下表示的二次曲面为
$\text{A.}$ 椭球面. $\text{B.}$ 单叶双曲面. $\text{C.}$ 双叶双曲面. $\text{D.}$ 柱面.

试卷二维码

分享此二维码到群,让更多朋友参与