考研数学
重点科目
其它科目

科数网

线性代/高等代数/n维线性空间与线性变换

数学

单选题 (共 3 题 ),每题只有一个选项正确
设 $\alpha_1, \alpha_2, \alpha_3$ 是三维向量空间 $\mathbb{R}^3$ 的基, 则由基 $\alpha_1, \alpha_2, \alpha_3$ 到 基 $\alpha_1+\alpha_2, \alpha_2+\alpha_3, \alpha_3+\alpha_1$ 的过渡矩阵为
$\text{A.}$ $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$ $\text{B.}$ $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ $\text{C.}$ $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$ $\text{D.}$ $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$

设 $n$ 维行向量 $\alpha=\left(\frac{1}{2}, 0 \cdots, 0 \frac{1}{2}\right)$ ,矩阵$A=E-\alpha^T \alpha, B=E+2 \alpha^T \alpha $, 其中 $E$ 为 $n$ 阶单位矩阵,则 $A B$ 等于
$\text{A.}$ 0 $\text{B.}$ $-\boldsymbol{E}$ $\text{C.}$ $E$ $\text{D.}$ $E+\alpha^T \alpha$

设 $\boldsymbol{A}, \boldsymbol{B}$ 均为 3 阶矩阵, 则必有
$\text{A.}$ $r(\boldsymbol{A}, \boldsymbol{A B})=r(\boldsymbol{A})$. $\text{B.}$ $r(\boldsymbol{A}, \boldsymbol{B A})=r(\boldsymbol{A})$. $\text{C.}$ $r\left(\begin{array}{c}\boldsymbol{A} \\ \boldsymbol{A B}\end{array}\right)=r(\boldsymbol{A})$. $\text{D.}$ $r(\boldsymbol{A B})=r(\boldsymbol{B A})$.

填空题 (共 3 题 ),请把答案直接填写在答题纸上
设 $\boldsymbol{A}, \boldsymbol{B}$ 同为 $n$ 阶方阵.
(1) 证明: $\left(\begin{array}{cc}A B & A \\ O & O\end{array}\right)$ 与 $\left(\begin{array}{cc}O & A \\ O & B A\end{array}\right)$ 相似.
(2) 证明: $\boldsymbol{A B}$ 与 $\boldsymbol{B} \boldsymbol{A}$ 有相同的特征多项式.

线性空间 $E$ 上一个线性变换 $\varphi$ 称为半单的, 如果对 $\varphi$ 的每个不变子空间 $E_1 \subseteq E$, 都存在 $\varphi$ 的不变子空间 $E_2 \subseteq E$, 使得 $E=E_1 \oplus E_2$.
证明: 若 $\varphi$ 是线性空间 $E$ 上的半单变换, $E_1$ 是 $\varphi$ 的一个不变子空间, 则 $\varphi$ 限制在 $E_1$ 上也是 半单的.

向量 $\gamma$ 在 $\alpha_1=[1,0,1]^T, \alpha_2=[0,1,-1]^T, \alpha_3=[1,2,0]^T$ 下的坐标是 $[5,7,-4]^T$, 则 在 $\beta_1=[1,0,1]^T, \beta_2=[-1,1,1]^T, \beta_3=[1,-2,-2]^T$ 下的坐标是

试卷二维码

分享此二维码到群,让更多朋友参与