考研数学
重点科目
其它科目

科数网

线性代/高等代数/矩阵与矩阵的秩

数学

单选题 (共 6 题 ),每题只有一个选项正确
设 $\boldsymbol{A}$ 为 2 阶矩阵, $\boldsymbol{E}$ 为 2 阶单位矩阵, $\boldsymbol{A}^2+\boldsymbol{E}=\boldsymbol{O}$, 则下列结论中, 正确的是
$\text{A.}$ $|\boldsymbol{A}|=1$. $\text{B.}$ $A^{\mathrm{T}}=\boldsymbol{A}$. $\text{C.}$ $\boldsymbol{A}^{\mathrm{T}}=-\boldsymbol{A}$. $\text{D.}$ $\boldsymbol{A}$ 不是正交矩阵.

设 $n$ 阶矩阵 $A, B$ 满足 $A A^T=E, B B^T=E$, 其中 $E$ 是 $n$ 阶单位矩阵, 则
$\text{A.}$ $|A+B|=|A|+|B|$ 总成立 $\text{B.}$ $|A+B|=|A|+|B|$ 总不成立 $\text{C.}$ 当 $|A||B| < 0$ 时, $|A+B|=|A|+|B|$ 成立 $\text{D.}$ 当 $|A||B|>0$ 时, $|A+B|=|A|+|B|$ 成立

设 $A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 2 & a & 1 \\ 1 & 2 & 1\end{array}\right)$, 且 $r(B)=2, r(A B)=1$, 则
$\text{A.}$ $r\left(\left(\begin{array}{ll}A^* & O \\ A & B\end{array}\right)\right)=3$ $\text{B.}$ $r\left(\left(\begin{array}{ll}A & O \\ O & B^*\end{array}\right)\right)=3$ $\text{C.}$ $r\left(\left(\begin{array}{cc}A^* & B \\ O & B^*\end{array}\right)\right)=3$ $\text{D.}$ $r\left(\left(\begin{array}{ll}A & B^* \\ O & B\end{array}\right)\right)=3$

$n$ 阶矩阵 $A=\left(\alpha_1, \alpha_2, \cdots, \alpha_n\right), B=\left(\beta_1, \beta_2, \cdots, \beta_n\right)$, 矩阵 $C_1=A B, C_2=A+B, C_3=(A, B)$, 则下列命题一定正确的是
(1)矩阵 $C_1$ 的列向量组可由 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性表示.
(2)矩阵 $C_1$ 的列向量组可由 $\beta_1, \beta_2, \cdots, \beta_n$ 线性表示.
(3)矩阵 $C_2$ 的列向量组可由矩阵 $C_3$ 的列向量线性表示.
(4) 矩阵的秩满足 $r\left(C_2\right) \leq r\left(C_3\right) \leq r(A)+r(B)$.
$\text{A.}$ (1)(3)(4) $\text{B.}$ (2)(3)(4) $\text{C.}$ (1)(4) $\text{D.}$ (3)(4)

设矩阵 $\boldsymbol{A}=\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$, 且 $|\boldsymbol{A}|=-2, \boldsymbol{B}=\left(\begin{array}{ccc}a_{31} & a_{32} & a_{33} \\ a_{21}+2 a_{11} & a_{22}+2 a_{12} & a_{23}+2 a_{13} \\ a_{11} & a_{12} & a_{13}\end{array}\right)$, 则 $\boldsymbol{A} \boldsymbol{B}^*=$
$\text{A.}$ $\left(\begin{array}{rrr}0 & 0 & 2 \\ 0 & 2 & -4 \\ 2 & 0 & 0\end{array}\right)$. $\text{B.}$ $\left(\begin{array}{rrr}0 & 0 & -2 \\ 0 & -2 & 4 \\ -2 & 0 & 0\end{array}\right)$. $\text{C.}$ $\left(\begin{array}{lll}0 & 0 & 2 \\ 0 & 2 & 4 \\ 2 & 0 & 0\end{array}\right)$. $\text{D.}$ $\left(\begin{array}{rrr}0 & 0 & -2 \\ 0 & -2 & -4 \\ -2 & 0 & 0\end{array}\right)$.

设 $\boldsymbol{A}$ 为 $m \times n$ 矩阵,若 $r(\boldsymbol{A})=n$, 给出以下四个结论:
(1) $\boldsymbol{A}$ 可以经过若干次初等行变换化为 $\left(\begin{array}{l}\boldsymbol{E}_n \\ \boldsymbol{O}\end{array}\right)$;
(2) 存在 $\boldsymbol{B}$ 使得 $\boldsymbol{B A}=\boldsymbol{E}$;
(3) $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}$ 与 $n$ 阶单位矩阵等价;
(4) $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}$ 与 $n$ 阶单位矩阵合同.
其中正确的个数为
$\text{A.}$ 4 $\text{B.}$ 3 $\text{C.}$ 2 $\text{D.}$ 1

试卷二维码

分享此二维码到群,让更多朋友参与