科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

高等数学/数学分析/空间解析几何与向量代数

数学

一、单选题 (共 4 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设 $z=f(x, y)$ 在点 $(1,1)$ 处可微, 且 $\lim _{\substack{x \rightarrow 1 \\ y \rightarrow 1}} \frac{f(x, y)-f(1,1)-2 x-y+3}{\sqrt{(x-1)^2+(y-1)^2}}=0$, 则 $z=f(x, y)$ 在 $(1,1)$ 点 沿 $\boldsymbol{l}=\{1,2\}$ 方向的方向导数为
$\text{A.}$ $-\frac{4}{\sqrt{5}}$ $\text{B.}$ $\frac{4}{\sqrt{5}}$ $\text{C.}$ -1 $\text{D.}$ 1


设向量组 ( I): $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 均为 4 维列向量, $A=\left(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\right)$, 若 $\eta_1=(-1,1,0,0,0)$, $\eta_2=(0,1,3,1,0), \quad \eta_3=(1,0,5,1,1)^{\mathrm{T}}$ 是齐次方程组 $A X=0$ 的一个基础解系, 则向量组 ( I) 的一个极大无关组 是 $\left(\begin{array}{l}\text { 。 }\end{array}\right.$
$\text{A.}$ $\alpha_1, \alpha_2$ $\text{B.}$ $\alpha_1, \alpha_4$ $\text{C.}$ $\alpha_3, \alpha_5$ $\text{D.}$ $\alpha_1, \alpha_3, \alpha_4$


原点关于直线 $\frac{x}{2}=\frac{y+1}{1}=\frac{z-4}{-2}$ 的对称点为
$\text{A.}$ $(-4,0,4)$ $\text{B.}$ $(4,0,4)$ $\text{C.}$ $(-4,0,-4)$ $\text{D.}$ $(4,0,-4)$


点 $M(1,0,-1)$ 到直线 $L:\left\{\begin{array}{l}x-y-z+1=0, \\ x+y-2 z=0\end{array}\right.$ 的距离为
$\text{A.}$ $\frac{\sqrt{5}}{\sqrt{14}}$ $\text{B.}$ $\frac{2 \sqrt{5}}{\sqrt{14}}$ $\text{C.}$ $\frac{3 \sqrt{5}}{\sqrt{14}}$ $\text{D.}$ $\frac{4 \sqrt{5}}{\sqrt{14}}$


二、填空题 (共 6 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
由 $x^2+y^2 \leq z \leq 1$ 表示的立体图形的体积 $V=$



设向量 $a=(2,1,2), \vec{b}=(4,-1,10), \vec{c}=\vec{b}-\lambda \hat{1}$, 且 $\vec{a} \perp \mathbf{1} \dot{c}$, 则 $\lambda=$



一质点在变力 $\boldsymbol{F}=\left(1-x^2\right) y^3 \boldsymbol{i}-x^3\left(1+y^2\right) \boldsymbol{j}$ 的作用下从圆周 $L: x^2+y^2=1$ 上的任一点出 发沿逆时针方向运动一周, 则变力 $\boldsymbol{F}$ 对质点所做的功等于



点 $M_0(2,2,2)$ 关于直线 $L: \frac{x-1}{3}=\frac{y+4}{2}=z-3$ 的对称点 $M_1$ 的坐标为



已知 $L: \frac{x-1}{2}=\frac{y}{0}=\frac{2 z+1}{\lambda}$ 与 $\pi: x-y+z=0$ 平 行, 则常数 $\boldsymbol{\lambda}$ 的值为



设矢量 $a, b$ 满足 $|a+b|=|a-b|$, 若 $a=(1,2,3), b=(1,4, \lambda)$, 则 $\lambda=$ ?



三、解答题 ( 共 5 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $\sigma$ 是数域 $\mathrm{K}$ 上 $n$ 维线性空间 $V$ 上的线性变换. 如果 $\sigma$ 的矩阵 可以对角化,则对 $\sigma$ 的任意一个不变子空间 $M$ ,证明:
(1) $\left.\sigma\right|_M$ 的矩阵也可以对角化.
(2) 存在 $\sigma$ 的不变子空间 $N$ ,使得 $V=M \oplus N$.



 

已知 $\vec{a}=\vec{i}, \vec{b}=\vec{j}-2 \vec{k}, \vec{c}=2 \vec{i}-2 \vec{j}+\vec{k}$, 求一单位向量 $\vec{m}$ ,使 $\vec{m} \perp \vec{c}$ ,且 $\vec{m}$ 与 $\vec{a}, \vec{b}$ 共面。



 

设 $A=\left(a_{k j}\right)_{3 \times 3}$ 是3阶实方阵, $|A| \neq 0$, 记 $D(x)=\left(a_{k j}+x\right)_{3 \times 3}$及 $g(x)=\operatorname{det} D(x)$ 。(1)试求导数 $g^{\prime}(x)$ 并证明: $g^{\prime}(0)=|A| \alpha^T\left(A^{-1}\right) \alpha$, 其中向量 $\alpha^T=(1,1,1)$;
(2) 若 $A=\left(\begin{array}{lll}2 & 3 & 4 \\ 2 & 1 & 1 \\ -1 & 1 & 2\end{array}\right)$, 求 $g^{\prime}(0)$ 。



 

设函数 $f(x)$ 连续, $\Sigma$ 是球面:
$$
x^2+y^2+z^2=1 \text { ,且 } a, b, c \text { 是常数. }
$$

证明:
$$
\iint_{\Sigma} f(a x+b y+c z) \mathrm{d} S=2 \pi \int_{-1}^1 f\left(\sqrt{a^2+b^2+c^2} u\right) \mathrm{d} u .
$$



 

试卷二维码

分享此二维码到群,让更多朋友参与