考研数学
重点科目
其它科目

科数网

高等数学/数学分析/偏导数与多元函数微分

数学

单选题 (共 5 题 ),每题只有一个选项正确
已知函数 $f(x, y)=|x-y| g(x, y)$, 其中 $g(x, y)$ 在点 $(0,0)$ 的某邻域内有定义, 则 $f(x, y)$在点 $(0,0)$ 处偏导数存在的充分条件是
$\text{A.}$ $g(0,0)=0$. $\text{B.}$ $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} g(x, y)$ 存在. $\text{C.}$ $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} g(x, y)$ 存在且 $g(0,0)=0$. $\text{D.}$ $g(x, y)$ 在点 $(0,0)$ 处连续, 且 $g(0,0)=0$.

设正值函数 $f(x, y, z)$ 与 $g(x, y, z)$ 在点 $(0,0,0)$ 处的各个偏导数均存在且连续, $f(0,0,0)=$ $g(0,0,0)=1, f(x, y, z)$ 在点 $(0,0,0)$ 处沿方向 $\boldsymbol{n}$ 的方向导数 $\left.\frac{\partial f}{\partial \boldsymbol{n}}\right|_{(0,0,0)}=1, g(x, y, z)$ 在点 $(0,0,0)$ 处沿方向 $\boldsymbol{n}$ 的方向导数 $\left.\frac{\partial g}{\partial \boldsymbol{n}}\right|_{(0,0,0)}=2$, 则 $\left.\frac{\partial\left(\frac{1}{f}+\frac{1}{g}\right)}{\partial \boldsymbol{n}}\right|_{(0,0,0)}=$
$\text{A.}$ 1 $\text{B.}$ 3 $\text{C.}$ -1 $\text{D.}$ -3

设 $f(x, y)$ 为可微函数, $f_y^{\prime}(x, x+y)=2 y, f(x, x)=x^2$, 则 $f_x^{\prime}(x, y)=$
$\text{A.}$ $4 x$ $\text{B.}$ $4 x+2 y$ $\text{C.}$ $2 y$ $\text{D.}$ $4 x-2 y$

设函数 $f(x)$ 连续, 满足 $\int_0^1 f(x) \mathrm{d} x=0$. 若 $\int_0^1 \mathrm{e}^{1-x} f\left(x \mathrm{e}^{1-x}\right) \mathrm{d} x=1$, 则 $\int_0^1 x \mathrm{e}^{1-x} f\left(x \mathrm{e}^{1-x}\right) \mathrm{d} x$ $= $
$\text{A.}$ -1 $\text{B.}$ 0 $\text{C.}$ 1 $\text{D.}$ e

若二元函数 $f(x, y)$ 存在二阶连续偏导数, 且满足 $f(x, y)=-f(y, x)$, 则下列结论中, 错误的是
$\text{A.}$ $f_{11}^{\prime \prime}(x, y)=f_{22}^{\prime \prime}(x, y)$. $\text{B.}$ $f_{11}^{\prime \prime}(x, y)=-f_{22}^{\prime \prime}(y, x)$. $\text{C.}$ $f_{12}^{\prime \prime}(x, y)=f_{21}^{\prime \prime}(x, y)$. $\text{D.}$ $f_{12}^{\prime \prime}(x, y)=-f_{21}^{\prime \prime}(y, x)$.

填空题 (共 1 题 ),请把答案直接填写在答题纸上
曲线 $\left\{\begin{array}{l}x=\arctan t \\ y=\ln \sqrt{1+t^2}\end{array}\right.$ 对应于 $t=1$ 处的法线方程为

试卷二维码

分享此二维码到群,让更多朋友参与