科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

高等数学/数学分析/重积分

数学

一、单选题 (共 5 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设 $D$ 是以 $A(1,1), B(-1,1), C(-1,-1)$ 为三顶点的三角形, 则 $I=$ $\iint_D\left[\sin (x y) \sqrt{x^2+3 y^2+1}+3 x+3 y\right] \mathrm{d} x \mathrm{~d} y=$
$\text{A.}$ 4 $\text{B.}$ 3 $\text{C.}$ 2 $\text{D.}$ 0


设 $I_1=\iint_D \sin \left|\frac{x-y}{2}\right| \mathrm{d} x \mathrm{~d} y, I_2=\iint_D \sin \left(\frac{x-y}{2}\right)^2 \mathrm{~d} x \mathrm{~d} y, I_3=\iint_D \sin \left(\frac{x-y}{2}\right)^3 \mathrm{~d} x \mathrm{~d} y$, 其中 $D=$ $\left\{(x, y) \mid(x-1)^2+(y-1)^2 \leqslant 2\right\}$, 则
$\text{A.}$ $I_1 < I_2 < I_3$ $\text{B.}$ $I_2 < I_3 < I_1$ $\text{C.}$ $I_3 < I_1 < I_2$ $\text{D.}$ $I_3 < I_2 < I_1$


设平面区域 $D$ 是由 $y=x, x=1$ 及 $x$ 轴所围成,二重积分 $\iint_D \frac{1}{\sqrt{x^2+y^2}} d \sigma$ 转换成平面极坐标系下的二次积分,可表示为?
$\text{A.}$ $\int_0^{\frac{\pi}{2}} d \theta \int_0^{\frac{1}{\cos \theta}} 1 d r$ $\text{B.}$ $\int_0^{\frac{\pi}{4}} d \theta \int_0^{\frac{1}{\cos \theta}} 1 d r$ $\text{C.}$ $\int_0^{\frac{\pi}{4}} d \theta \int_0^{\frac{1}{\sin\theta}} 1 d r$ $\text{D.}$ $\int_0^{\frac{\pi}{4}} d \theta \int_0^{\frac{1}{\sin\theta}} 1 d r$


函数 $f(x, y)$ 连续,交换二重积分 $\int_0^1 d y \int_y^{\sqrt{y}} f(x, y) d x$ 次序,该二重积分可表示为?
$\text{A.}$ $\int_0^1 d x \int_{x^3}^x f(x, y) d y$ $\text{B.}$ $\int_0^1 d x \int_{x^4}^x f(x, y) d y$ $\text{C.}$ $\int_0^1 d x \int_{x^2}^x f(x, y) d y$ $\text{D.}$ $\int_0^1 d x \int_{x^5}^x f(x, y) d y$


二、填空题 (共 3 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
$\int_0^1 \ln (1+\sqrt{x}) \mathrm{d} x=$ ________ .



设 $D: 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1, \operatorname{sgn} x=\left\{\begin{array}{cl}1, & x>0, \\ 0, & x=0, \\ -1, & x < 0,\end{array}\right.$ 则 $\iint_D \max \{x, y\} \operatorname{sgn}(x-y) \mathrm{d} x \mathrm{~d} y=$



已知 $f(x, y)=x y+x^2 y \iint_D x y f(x, y) \mathrm{d} x \mathrm{~d} y$, 其中 $D: y=x, y=0, x=1$ 所围成区域, 则
$$
\frac{\partial^2 f}{\partial x \partial y}=
$$



三、解答题 ( 共 3 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $\Omega \subset \mathbf{R}^3$ 是有界闭区域, $I(\Omega)=\iiint_{\Omega}\left(x^2+\frac{y^2}{4}+\frac{z^2}{9}-1\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z$ 取得最小值的积分域记为 $\Omega_1$.
(I) 求 $I\left(\Omega_1\right)$ 的值;
(II) 计算 $\iint_{\Sigma} \frac{x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y}{\left(x^2+2 y^2+3 z^2\right)^{\frac{3}{2}}}$, 其中 $\Sigma$ 是 $\Omega_1(z \geqslant 0)$ 的上侧边界.



 

计算二重积分, $I=\iint_D(x+2 y) d \sigma$ ,其中 $D$ 为 $x^2+y^2=2 x$ 所围成的区域



 

计算二重积分, $I=\int_{\frac{1}{4}}^{\frac{1}{2}} d y \int_{\frac{1}{2}}^{\sqrt{y}} e^{\frac{y}{x}} d x+\int_{\frac{1}{2}}^1 d y \int_y^{\sqrt{y}} e^{\frac{y}{x}} d x$



 

试卷二维码

分享此二维码到群,让更多朋友参与