一、单选题 (共 29 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设 $R$ 为幂级数 $\sum_{n=1}^{\infty} a_n r^n$ 的收敛半径, $r$ 是实数, 则 ( )
$\text{A.}$ $\sum_{n=1}^{\infty} a_n r^n$ 发散时, $|r| \geq R$
$\text{B.}$ $\sum_{n=1}^{\infty} a_n r^n$ 发散时, $|r| \leq R$
$\text{C.}$ $|r| \geq R$ 时, $\sum_{n=1}^{\infty} a_n r^n$ 发散
$\text{D.}$ $|r| \leq R$ 时, $\sum_{n=1}^{\infty} a_n r^n$ 发散
设数列 $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ 与 $\{\mathrm{y_n}\}$ 满足 $\lim _{\mathrm{n} \rightarrow \infty} x_n y_n=0$, 则下列命题正确的是
$\text{A.}$ 若 $\left\{x_n\right\}$ 发散, 则 $\left\{y_n\right\}$ 必发散
$\text{B.}$ 若 $\left\{x_n\right\}$ 收敛, 则 $\left\{y_n\right\}$ 必收敛
$\text{C.}$ 若 $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ 有界,则 $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ 必为无穷小
$\text{D.}$ 若 $\left\{\frac{1}{\mathrm{x}_{\mathrm{n}}}\right\}$ 有界,则 $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ 必为无穷小
设函数 $f(x)$ 在 $(-\infty,+\infty)$ 上连续, 其导函数图形如图所示, 则 $f(x)$ 的极值点的个数为
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
关于函数 $y=x \ln x, x$ 定义域为 $(0,+\infty)$, 以下描述不正确的是
$\text{A.}$ 在区间 $\left(0, \mathrm{e}^{-1}\right)$ 单调递减
$\text{B.}$ 在 $\mathrm{x}=\mathrm{e}^{-1}$ 处取最小值
$\text{C.}$ $\left(e^{-1},-e^{-1}\right)$ 是曲线 $y=x \ln x$ 的拐点
$\text{D.}$ 曲线 $y=x \ln x$ 无渐近线
若函数 $f(x)=2^{\frac{1}{x}}+\arctan \frac{x|x|}{(x-1)(x-2)}$ 下面哪一条直线不是此函数的渐近线
$\text{A.}$ $x=0$
$\text{B.}$ $y=1-\frac{\pi}{4}$
$\text{C.}$ $x=2$
$\text{D.}$ $y=1+\frac{\pi}{4}$
$\lim _{x \rightarrow 0} \frac{\int_0^{x^2} \sin t^2 \mathrm{~d} t}{x^6}=$
$\text{A.}$ $\frac{1}{6}$
$\text{B.}$ $\frac{1}{2}$
$\text{C.}$ $\frac{1}{3}$
$\text{D.}$ $1$
设在 $[0,1)$ 上 $f(x)$ 二阶可导,且 $f^{\prime \prime}(x)>0$ ,则
$\text{A.}$ $f^{\prime}(0) < f^{\prime}(1) < f(1)-f(0)$
$\text{B.}$ $ f^{\prime}(0) < f(1)-f(0) < f^{\prime}(1)$
$\text{C.}$ $f^{\prime}(1) < f^{\prime}(0) < f(1)-f(0)$
$\text{D.}$ $f(1)-f(0) < f^{\prime}(1) < f^{\prime}(0)$
当 $x \rightarrow+\infty$ 时, $f(x)=\left(x^3-x^2+\frac{1}{2} x\right) \mathrm{e}^{\frac{1}{x}}-\sqrt{x^6+1}-\frac{1}{6}$ 是 $g(x)=\alpha x^\beta$ 等价无穷小, 则 $\alpha, \beta=$
$\text{A.}$ $\alpha=\frac{1}{2}, \beta=-1$
$\text{B.}$ $\alpha=\frac{1}{8}, \beta=-1$
$\text{C.}$ $\alpha=\frac{1}{8}, \beta=-2$
$\text{D.}$ $\alpha=\frac{1}{2}, \beta=-2$
设 $g(t)$ 是正值连续函数, 且 $f(x)=\int_{-a}^a|x-t| g(t) \mathrm{d} t, a>0, x \in[-a, a]$, 关于曲线 $y=f(x)$, 下列说法正确的是
$\text{A.}$ 在 $[-a, 0]$ 上是凹的, 在 $[0, a]$ 上是凸的
$\text{B.}$ 在 $[-a, 0]$ 上是凸的, 在 $[0, a]$ 上是凹的.
$\text{C.}$ 在 $[-a, a]$ 上是凹的.
$\text{D.}$ 在 $[-a, a]$ 上是凸的.
设 $f(x)$ 在 $[0,+\infty)$ 上有连续导数, 且 $f(0)>0, f^{\prime}(x) \geqslant 0$, 若 $F(x)=f(x)+f^{\prime}(x)$, 则 $\int_0^{+\infty} \frac{1}{f(x)} \mathrm{d} x$ 收敛是 $\int_0^{+\infty} \frac{1}{F(x)} \mathrm{d} x$ 收敛的
$\text{A.}$ 必要非充分条件.
$\text{B.}$ 充分非必要条件.
$\text{C.}$ 充分必要条件.
$\text{D.}$ 既非充分也非必要条件.
当 $x \rightarrow 0$ 时, $x-\ln \left(x+\sqrt{1+x^2}\right) \sim c x^k$, 则 $c, k$ 分别是
$\text{A.}$ $\frac{1}{3}, 3$.
$\text{B.}$ $\frac{1}{6}, 3$.
$\text{C.}$ $\frac{1}{3}, 2$.
$\text{D.}$ $\frac{1}{6}, 2$.
设 $f(x)$ 满足微分方程 $f^{\prime \prime}(x)+x f^{\prime}(x)=\ln (1+x)-\frac{\arctan x}{x+1}$, 且 $f(x)$ 有驻点 $x=x_0>0$, 则
$\text{A.}$ $x_0$ 不是 $f(x)$ 的极值点.
$\text{B.}$ $x_0$ 是 $f(x)$ 的极大值点.
$\text{C.}$ $x_0$ 是 $f(x)$ 的极小值点.
$\text{D.}$ 无法判断 $x_0$ 是否是 $f(x)$ 的极值点.
曲线 $f(x)=\int_x^{\sqrt{3}} x \sin t^2 \mathrm{~d} t$ 与直线 $x=0, x=\sqrt{3}, y=0$ 所围平面图形绕 $y$ 轴旋转一周所形成的 旋转体的体积为
$\text{A.}$ $\frac{1}{3} \pi \sin 3-\pi \cos 3$.
$\text{B.}$ $-\frac{1}{3} \pi \sin 3-\pi \cos 3$.
$\text{C.}$ $\frac{2}{3} \pi \sin 3-2 \pi \cos 3$.
$\text{D.}$ $-\pi \cos 3-\pi \sin 3$.
$\lim _{n \rightarrow \infty} \frac{\pi}{2 n^4} \sum_{i=1}^n \sum_{j=1}^n i^2 \sin \frac{\pi j}{2 n}=$
$\text{A.}$ $\frac{1}{2}$.
$\text{B.}$ $\frac{1}{3}$.
$\text{C.}$ $\frac{1}{4}$.
$\text{D.}$ $\frac{1}{5}$.
当 $x \rightarrow 0^{+}$时, 与 $\sqrt{x}$ 等价的无穷小量是:
$\text{A.}$ $\sqrt{1+\sqrt{x}}-1$
$\text{B.}$ $\ln \left(\frac{1+x}{1-\sqrt{x}}\right)$
$\text{C.}$ $1-e^{\sqrt{x}}$
$\text{D.}$ $1-\cos \sqrt{x}$
设函数 $f(x)=\left\{\begin{array}{cc}e^{a x} & x \leq 0 \\ b\left(1-x^2\right) & x>0\end{array}\right.$ 处处可导, 那么
$\text{A.}$ $a=b=1$
$\text{B.}$ $a=-2, b=-1$
$\text{C.}$ $a=0, b=1$
$\text{D.}$ $a=1, b=0$