考研数学
重点科目
其它科目

科数网

数学试卷4

数学

单选题 (共 6 题 ),每题只有一个选项正确
$\int_{-\infty}^{+\infty} \frac{\mathrm{d} x}{1+x^2}=$
$\text{A.}$ $\frac{\pi}{2}$ $\text{B.}$ $-\frac{\pi}{2}$. $\text{C.}$ $\pi$ $\text{D.}$ $-\pi$.

由抛物线 $y=6-x^2$ 与直线 $y=3-2 x$ 围成平面图形的面积 $A=$.
$\text{A.}$ $\frac{11}{5}$ $\text{B.}$ $\frac{18}{5}$. $\text{C.}$ $\frac{19}{3}$ $\text{D.}$ $\frac{32}{3}$.

曲线 $y=x \mathrm{e}^{\frac{x^2}{2}}$ 与其渐近线之间图形的面积为
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 4 $\text{D.}$ 6

设函数 $f(x)=\left\{\begin{array}{ll}1+\sin \frac{\pi}{2} x, & x \leqslant 1, \\ 2-\sqrt{x-1}, & x>1 .\end{array}\right.$ 对 $f(x)$ 给出两个命题:①点 $x=1$ 是 $f(x)$ 的一个极 值点; ②点 $(1,2)$ 是曲线 $y=f(x)$ 的一个拐点. 则
$\text{A.}$ ①和 ② 都正确. $\text{B.}$ ①正确,但② 不正确. $\text{C.}$ ① 不正确, 但② 正确. $\text{D.}$ ①和② 都不正确.

设函数 $f(x)$ 在闭区间 $[0,2]$ 上二阶可导, 且 $f^{\prime \prime}(x)>0$, 又 $f(0)=2 f(1)=f(2)=2$, 则
$\text{A.}$ $1 < \int_0^2 f(x) \mathrm{d} x < 2$. $\text{B.}$ $\frac{3}{2} < \int_0^2 f(x) \mathrm{d} x < \frac{5}{2}$. $\text{C.}$ $2 < \int_0^2 f(x) \mathrm{d} x < 3$. $\text{D.}$ $3 < \int_0^2 f(x) \mathrm{d} x < 4$.

当 $x \rightarrow 0$ 时, $\frac{1}{x^2} \sin \frac{1}{x}$ 是
$\text{A.}$ 无穷大 $\text{B.}$ 无穷小 $\text{C.}$ 有界但非无穷小 $\text{D.}$ 无界但非无穷大

试卷二维码

分享此二维码到群,让更多朋友参与