科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

数学试卷1

数学

一、单选题 (共 29 题,每小题 5 分,共 50 分,每题只有一个选项正确)
已知当 $x \rightarrow 0$ 时, 函数 $f(x)=3 \sin x-\sin 3 x$ 与 $c x^k$ 是等价无穷小, 则
$\text{A.}$ $k=1, c=4$. $\text{B.}$ $k=1, c=-4$. $\text{C.}$ $k=3, c=4$. $\text{D.}$ $k=3, c=-4$.


设 $f(x)$ 在 $x=0$ 处连续, 则 $f(x)$ 在 $x=0$ 处可导的充分条件是
$\text{A.}$ $\lim _{x \rightarrow 0} \frac{f(x)-f(-x)}{2 x}$ 存在. $\text{B.}$ $\lim _{x \rightarrow 0} \frac{f\left(\ln \left(1+x^2\right)\right)-f(0)}{x^2}$ 存在. $\text{C.}$ $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{\sqrt[3]{x}}$ 存在. $\text{D.}$ $\lim _{x \rightarrow \infty} x f\left(\frac{1}{x}\right)$ 存在.


设 $I_1=\int_0^{\frac{\pi}{2}} \sin (\sin x) \mathrm{d} x, I_2=\int_0^{\frac{\pi}{2}} \cos (\sin x) \mathrm{d} x$, 则
$\text{A.}$ $I_1 < 1 < I_2$. $\text{B.}$ $1 < I_1 < I_2$. $\text{C.}$ $I_2 < 1 < I_1$. $\text{D.}$ $I_1 < I_2 < 1$.


设函数 $f(x)$ 满足关系式 $f^{\prime \prime}(x)+\left[f^{\prime}(x)\right]^2=x$ 且 $f^{\prime}(0)=0$ 则
$\text{A.}$ $f(0)$ 是 $f(x)$ 的极大值; $\text{B.}$ $f(0)$ 是 $f(x)$ 的极小值; $\text{C.}$ $(0, f(0))$ 是曲线 $y=f(x)$ 的拐点; $\text{D.}$ $f(0)$ 不是 $f(x)$ 的极值, $(0, f(0))$ 也不是曲线 $y=f(x)$ 的拐点.


已知函数 $y=f(x)$ 对一切 $x$ 满足 $x f^{\prime \prime}(x)+3 x\left[f^{\prime}(x)\right]^2=1-\mathrm{e}^{-x}$若 $f^{\prime}\left(x_0\right)=0\left(x_0 \neq 0\right)$ 则
$\text{A.}$ $f\left(x_0\right)$ 是 $f(x)$ 的极大值; $\text{B.}$ $f\left(x_0\right)$ 是 $f(x)$ 的极小值; $\text{C.}$ $\left(x_0, f\left(x_0\right)\right)$ 是曲线 $y=f(x)$ 的拐点; $\text{D.}$ $f\left(x_0\right)$ 不是 $f(x)$ 的极值, $\left(x_0, f\left(x_0\right)\right)$ 也不是曲线 $y=f(x)$ 的拐点.


设 $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{(x-a)^n}=-1$, 其中 $n$ 为大于 1 的整数, 则在点 $x=a$ 处
$\text{A.}$ $f(x)$ 的导数存在, 且 $f^{\prime}(a) \neq 0$; $\text{B.}$ $f(x)$ 取得极大值; $\text{C.}$ $f(x)$ 取得极小值; $\text{D.}$ $f(x)$ 是否取得极值与 $n$ 的取值有关.


设 $f(x), g(x)$ 是恒大于零的可导函数, 且 $f^{\prime}(x) g(x)-f(x) g^{\prime}(x) < 0$, 则当 $a < x < b$ 时, 有
$\text{A.}$ $f(x) g(b)>f(b) g(x)$ $\text{B.}$ $f(x) g(a)>f(a) g(x)$ $\text{C.}$ $f(x) g(x)>f(b) g(b)$ $\text{D.}$ $f(x) g(x)>f(a) g(a)$


用 “ $A \rightarrow B$ ” 表示概念 $A$ 可以推导出概念 $B$, 函数 $y=f(x)$ 的可导、可微、连续、可积在某闭区间上的推导关系正确的是
$\text{A.}$ 可导 $\rightarrow$ 可微 $\rightarrow$ 连续 $\rightarrow$ 可积 $\text{B.}$ 连续 $\rightarrow$ 可导 $\rightarrow$ 可微 $\rightarrow$ 可积 $\text{C.}$ 可积 $\rightarrow$ 连续 $\rightarrow$ 可导 $\rightarrow$ 可微 $\text{D.}$ 可积 $\rightarrow$ 可微 $\rightarrow$ 可导 $\rightarrow$ 连续


函数 $f(x)=\frac{1}{x} \ln |1+x|$ 有
$\text{A.}$ 两个可去间断点 $\text{B.}$ 两个无穷间断点 $\text{C.}$ 一个可去间断点和一个跳跃间断点 $\text{D.}$ 一个可去间断点和一个无穷间断点


函数 $y=x \arctan x$ 在
$\text{A.}$ $(-\infty,+\infty)$ 内处处是凸的 $\text{B.}$ $(-\infty,+\infty)$ 内处处是凹的 $\text{C.}$ $(-\infty, 0)$ 内为凸的, $(0,+\infty)$ 内为凹的 $\text{D.}$ $(-\infty, 0)$ 内为凹的, $(0,+\infty)$ 内为凸的


设函数 $p(x)$ 在区间 $[a, b]$ 上连续, $y(x)$ 在区间 $[a, b]$ 上具有二阶导数且满足
$y^{\prime \prime}(x)+p(x) y^{\prime}(x)-y(x)=0, y(a)=y(b)=0,$ 则在 $[a, b]$ 上, $y(x)$
$\text{A.}$ 有正的最大值,无负的最小值. $\text{B.}$ 有负的最小值,无正的最大值. $\text{C.}$ 既有正的最大值, 又有负的最小值. $\text{D.}$ 既无正的最大值, 又无负的最小值.


点 $P(1,0,1)$ 到直线 $\left\{\begin{array}{l}x-y-z+1=0, \\ x+y-3 z=0\end{array}\right.$ 的距离 $d=$ (  )
$\text{A.}$ $\frac{\sqrt{2}}{3}$. $\text{B.}$ $\frac{\sqrt{3}}{2}$. $\text{C.}$ $\sqrt{2}$. $\text{D.}$ $\sqrt{3}$.


曲线 $y=\int_0^x \mathrm{e}^{-\sqrt{t}} \mathrm{~d} t$ 与 $y$ 轴及其 $x \rightarrow+\infty$ 方向的水平渐近线所围图形的面积为
$\text{A.}$ 4 $\text{B.}$ 8 $\text{C.}$ 12 $\text{D.}$ 16


设 $\sum_{n=1}^{\infty} a_n$ 收敛,下面 4 个级数,
(1) $\sum_{n=1}^{\infty} a_n^2$;
(2) $\sum_{n=1}^{\infty}\left(a_n-a_{n+1}\right)$;
(3) $\sum_{n=1}^{\infty}\left(a_{2 n-1}+a_{2 n}\right)$;
(4) $\sum_{n=1}^{\infty}\left(a_{2 n-1}-a_{2 n}\right)$.
必收敛的个数为 (  )
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4


设函数 $f(x)$ 在 $\mathbf{R}$ 上有定义, 且满足 $\lim _{x \rightarrow 0} \frac{f(x)-1}{x}=-1$, 则下列正确的是 (  )
$\text{A.}$ $f(0)=1$. $\text{B.}$ $\lim _{x \rightarrow 0} f(x)=1$. $\text{C.}$ $f^{\prime}(0)=-1$. $\text{D.}$ $f^{\prime}(0)=1$.


函数 $y=\frac{(x+1)^2}{x}$ 的图形有 $n$ 条渐近线, 则 $n=$ (  )
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3


设函数 $y=y(x)$ 由方程 $\ln \left(x^2+y^2\right)=\arctan \frac{y}{x}$ 确定, 且满足 $y(1)=0$, 则 $y^{\prime \prime}(1)=$ (  )
$\text{A.}$ 0 $\text{B.}$ $\frac{1}{2}$. $\text{C.}$ 10 $\text{D.}$ 20


设 $f(x)=\lim _{n \rightarrow \infty} \frac{x^n-x^{2-n}}{x^{n+2}+x^{-n}}, F(x)=\int_0^x f(t) \mathrm{d} t$, 则下列结论正确的是
$\text{A.}$ $f(x)$ 仅有 2 个间断点, $F(x)$ 为连续的偶函数. $\text{B.}$ $f(x)$ 仅有 2 个间断点, $F(x)$ 为连续的奇函数. $\text{C.}$ $f(x)$ 有 3 个间断点, $F(x)$ 有 3 个不可导点. $\text{D.}$ $f(x)$ 有 3 个间断点, $F(x)$ 有 2 个不可导点.


设 $1 < x < 3$, 则极限 $\lim _{n \rightarrow \infty} \sqrt[n]{2024+x^n+x^{2 n}+\frac{1}{3^n} x^{3 n}}=$
$\text{A.}$ 1 $\text{B.}$ $x$. $\text{C.}$ $x^2$. $\text{D.}$ $\frac{x^3}{3}$.


已知 $a_n=\frac{(-1)^{[\cos 2 n]}}{n}$, 其中 $n$ 为正整数, $[\cos 2 n]$ 表示不超过 $\cos 2 n$ 的最大整数, 则数列 $\left\{a_n\right\}$
$\text{A.}$ 有最大值 $\frac{1}{2}$, 有最小值 -1 . $\text{B.}$ 有最大值 1 , 有最小值 $-\frac{1}{3}$. $\text{C.}$ 有最大值 1 , 有最小值 $-\frac{1}{2}$. $\text{D.}$ 有最大值 $\frac{1}{3}$, 有最小值 -1 .


设 $0 < a < 1, I_1=\int_0^1 \frac{\mathrm{e}^{a x}-1}{\mathrm{e}^x-1} \mathrm{~d} x, I_2=\int_0^1 \frac{\sqrt{a x}+1}{\sqrt{x}+1} \mathrm{~d} x$, 则
$\text{A.}$ $I_1 < a < I_2$. $\text{B.}$ $I_2 < a < I_1$. $\text{C.}$ $a < I_1 < I_2$. $\text{D.}$ $I_1 < I_2 < a$.


设函数 $f(x)$ 在 $(0,+\infty)$ 内可导, 则下列命题中, 正确的个数是
(1) 若 $\lim _{x \rightarrow 0^{+}} f(x)=\infty$, 则 $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\infty$.
(2) 若 $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\infty$, 则 $\lim _{x \rightarrow 0^{+}} f(x)=\infty$.
(3) 若 $\lim _{x \rightarrow+\infty} f(x)$ 存在且有限, 则 $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在且有限.
(4) 若 $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在且有限, 则 $\lim _{x \rightarrow+\infty} f(x)$ 存在且有限.
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4


设 $[x]$ 表示不超过 $x$ 的最大整数,则 $x=0$ 是函数 $f(x)=\mathrm{e}^{-\frac{[x]}{x}}$ 的
$\text{A.}$ 跳跃间断点 $\text{B.}$ 可去间断点 $\text{C.}$ 无穷型间断点 $\text{D.}$ 无限振荡型间断点


设 $f(x), g(x)$ 在 $[a, b]$ 上连续, 关于 $f(x), g(x)$ 的定积分有以下命题
(1) 若 $f(x) \geqslant 0$ 且不恒等于 0 , 则 $\int_a^b f(x) \mathrm{d} x>0$
(2) 若 $f(x) \geqslant 0$, 且 $\int_a^b f(x) \mathrm{d} x=0$, 则 $f(x) \equiv 0$
(3) 若 $f(x) \leqslant g(x)$ 且存在 $x_0 \in[a, b]$ 使 $f\left(x_0\right) < g\left(x_0\right)$, 则 $\int_a^b f(x) \mathrm{d} x < \int_a^b g(x) \mathrm{d} x$
(4) 若 $f(x) \leqslant g(x)$ 且 $\int_a^b f(x) \mathrm{d} x=\int_a^b g(x) \mathrm{d} x$, 则 $f(x) \equiv g(x)$以上命题中正确的个数为
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4


设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内单调有界, $\left\{x_n\right\}$ 为数列, 下列命题正确的是
$\text{A.}$ 若 $\left\{x_n\right\}$ 收敛, 则 $\left\{f\left(x_n\right)\right\}$ 收敛 $\text{B.}$ 若 $\left\{x_n\right\}$ 单调, 则 $\left\{f\left(x_n\right)\right\}$ 收敛 $\text{C.}$ 若 $\left\{f\left(x_n\right)\right\}$ 收敛, 则 $\left\{x_n\right\}$ 收敛. $\text{D.}$ 若 $\left\{f\left(x_n\right)\right\}$ 单调, 则 $\left\{x_n\right\}$ 收敛.


函数 $f(x)=\lim _{n \rightarrow \infty} \frac{x^n+2}{x^n+1}$ 的间断点及类型是
$\text{A.}$ $x=1$ 是第一类间断点, $x=-1$ 是第二类间断点 $\text{B.}$ $x=1$ 是第二类间断点, $x=-1$ 是第一类间断点 $\text{C.}$ $x= \pm 1$ 均是第一类间断点 $\text{D.}$ $x= \pm 1$ 均是第二类间断点


当 $x \rightarrow 0^{+}$时, 与 $\sqrt{x}$ 等价的无穷小量是
$\text{A.}$ $1-\mathrm{e}^{\sqrt{x}}$. $\text{B.}$ $\sqrt{1+\sqrt{x}}-1$. $\text{C.}$ $\ln \frac{1+x}{1-\sqrt{x}}$. $\text{D.}$ $1-\cos \sqrt{x}$.


设函数 $f(x)$ 在 $x=0$ 处连续, 下列命题错误 的是
$\text{A.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ 存在, 则 $f(0)=0$. $\text{B.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)+f(-x)}{x}$ 存在, 则 $f(0)=0$. $\text{C.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ 存在, 则 $f^{\prime}(0)$ 存在. $\text{D.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)-f(-x)}{x}$ 存在, 则 $f^{\prime}(0)$ 存在.


曲线 $y=x \ln \left(\mathrm{e}+\frac{1}{x}\right) \quad(x>0)$ 的渐近线条数为
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3


试卷二维码

分享此二维码到群,让更多朋友参与