科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

数学试卷5

数学

一、单选题 (共 29 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设有函数序列 $f_n(x)=(n+1) x^n, 0 < x < 1, n=1,2, \cdots$, 下列四个结论:
(1) $\lim _{n \rightarrow} f_n(x)=0, x \in(0,1)$; (2) 若数列 $x_n \in(0,1), \lim _{n \rightarrow} x_n$ 存在, 则 $\lim _{n \rightarrow} f_n\left(x_n\right)=0$;
(3) $\lim _{n \rightarrow \infty} f_n^{\prime}(x)=0 \cdot x \in(0.1)$; (4) $\lim _{n \rightarrow} \int_0^1 f_n(x) \mathrm{d} x=0$ 中, 正确的是
$\text{A.}$ (1) 和 (2) $\text{B.}$ (3) 和 (4) $\text{C.}$ (1) 和 (3) $\text{D.}$ (2) 和 (4)


下列级数中, 绝对收敛的是
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{\sin n^2}{n^2}$ $\text{B.}$ $\sum_{n=1}^{\infty}(-1)^n \frac{1}{\sqrt{n}}$ $\text{C.}$ $\sum_{n=1}^{\infty}(-1)^n \frac{1}{n}$ $\text{D.}$ $\sum_{n=1}^{\infty}(-1)^n \cdot \frac{n}{n+1}$


方程 $\arcsin x=k x$ 在 $x \in[0,1]$ 只有一个解, 那么 $k$ 的取值范围是
$\text{A.}$ $\left(1, \frac{\pi}{2}\right]$ $\text{B.}$ $k \geqslant \frac{\pi}{2}$ 或者 $k < 1$ $\text{C.}$ $k>\frac{\pi}{2}$ 或者 $k \leqslant 1$ $\text{D.}$ $k=1$


函数 $f(x)=\lim _{n \rightarrow \infty} \frac{x^n+2}{x^n+1}$ 的间断点及类型是
$\text{A.}$ $x=1$ 是第一类间断点, $x=-1$ 是第二类间断点 $\text{B.}$ $x=1$ 是第二类间断点, $x=-1$ 是第一类间断点 $\text{C.}$ $x=\pm 1$ 均是第一类间断点 $\text{D.}$ $x=\pm 1$ 均是第二类间断点


设函数 $f(x)$ 在 $x=0$ 处连续, 下列命题错误的是
$\text{A.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ 存在, 则 $f(0)=0$. $\text{B.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)+f(-x)}{x}$ 存在, 则 $f(0)=0$. $\text{C.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ 存在, 则 $f^{\prime}(0)$ 存在. $\text{D.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)-f(-x)}{x}$ 存在, 则 $f^{\prime}(0)$ 存在.


设 $F(x)=\int_x^{x+2 \pi} \mathrm{e}^{\sin t} \sin t \mathrm{~d} t$, 则 $F(x)$
$\text{A.}$ 为正常数 $\text{B.}$ 为负常数 $\text{C.}$ 恒为零. $\text{D.}$ 不为常数


设 $f(x)$ 在点 $x=a$ 的某个邻域内有定义, 则 $f(x)$ 在 $x=a$ 处可导的一个充分条件是
$\text{A.}$ $\lim _{h \rightarrow+\infty} h\left[f\left(a+\frac{1}{h}\right)-f(a)\right]$ 存在. $\text{B.}$ $\lim _{h \rightarrow 0} \frac{f(a+2 h)-f(a+h)}{h}$ 存在. $\text{C.}$ $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h}$ 存在. $\text{D.}$ $\lim _{h \rightarrow 0} \frac{f(a)-f(a-h)}{h}$ 存在.


设函数 $f(x)=\lim _{n \rightarrow \infty} \sqrt[n]{1+|x|^{3 n}}$, 则 $f(x)$ 在 $(-\infty,+\infty)$ 内
$\text{A.}$ 处处可导. $\text{B.}$ 恰有一个不可导点. $\text{C.}$ 恰有两个不可导点. $\text{D.}$ 至少有三个不可导点.


设函数 $f(x)$ 连续, 且 $f^{\prime}(0)>0$, 则存在 $\delta>0$, 使得
$\text{A.}$ $f(x)$ 在 $(0, \delta)$ 内单调增加. $\text{B.}$ $f(x)$ 在 $(-\delta, 0)$ 内单调减少. $\text{C.}$ 对任意的 $x \in(0, \delta)$, 有 $f(x)>f(0)$. $\text{D.}$ 对任意的 $x \in(-\delta, 0)$, 有 $f(x)>f(0)$.


设函数 $f(x)$ 在 $x=0$ 的某邻域内连续, 且 $\lim _{x \rightarrow 0} \frac{f(x)}{x \sin x}=-2$, 则在 $x=0$ 处 $f(x)$
$\text{A.}$ 不可导. $\text{B.}$ 可导, 且 $f^{\prime}(0) \neq 0$. $\text{C.}$ 取极大值. $\text{D.}$ 取极小值.


设函数 $f(x)$ 具有 2 阶导数, $g(x)=f(0)(1-x)+f(1) x$ 则在区间 $[0,1]$ 上
$\text{A.}$ 当 $f^{\prime}(x) \geq 0$ 时, $f(x) \geq g(x)$. $\text{B.}$ 当 $f^{\prime}(x) \geq 0$ 时, $f(x) \leq g(x)$. $\text{C.}$ 当 $f^{\prime \prime}(x) \geq 0$ 时, $f(x) \geq g(x)$. $\text{D.}$ 当 $f^{\prime \prime}(x) \geq 0$ 时, $f(x) \leq g(x)$.


设函数 $f_i(x)(i=1,2)$ 具有二阶连续导数, 且 $f_i^{\prime \prime}\left(x_0\right) < 0(i=1,2)$. 若两条曲线 $y=f_i(x)(i=1,2)$ 在点 $\left(x_0, y_0\right)$ 处具有公切线 $y=g(x)$, 且该点 处曲线 $y=f_1(x)$ 的曲率大于曲线 $y=f_2(x)$ 的曲率, 则在 $x_0$ 的某个邻域内 , 有
$\text{A.}$ $f_1(x) \leq f_2(x) \leq g(x)$. $\text{B.}$ $f_2(x) \leq f_1(x) \leq g(x)$. $\text{C.}$ $f_1(x) \leq g(x) \leq f_2(x)$. $\text{D.}$ $f_2(x) \leq g(x) \leq f_1(x)$.


设函数 $f(x)$ 是连续函数, 则下列结论中正确的个数是
(1)若 $f(x)$ 在任意区间 $[a, b]$ 上满足 $\int_a^b f(x) \mathrm{d} x=0$, 则 $f(x) \equiv 0$.
(2)若 $f(x) \geq 0$, 并且存在区间 $[a, b]$ 使得 $\int_a^b f(x) \mathrm{d} x=0$, 则 $f(x)=0(x \in[a, b])$.
(3) 若 $\left[a_1, b_1\right] \subset[a, b]$, 则 $\int_{a_1}^{b_1} f(x) \mathrm{d} x \leq \int_a^b f(x) \mathrm{d} x$.
(4) 设 $g(x)$ 连续. 若 $f(x)>g(x), a, b$ 为不相等的常数, 则 $\int_a^b f(x) \mathrm{d} x>\int_a^b g(x) \mathrm{d} x$.
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3


$\lim _{n \rightarrow \infty} \sum_{i=1}^n \sum_{j=1}^n \frac{n}{(n+i)\left(n^2+j^2\right)}=$
$\text{A.}$ $\int_0^1 \mathrm{~d} x \int_0^x \frac{1}{(1+x)\left(1+y^2\right)} \mathrm{d} y$. $\text{B.}$ $\int_0^1 \mathrm{~d} x \int_0^x \frac{1}{(1+x)(1+y)} \mathrm{d} y$. $\text{C.}$ $\int_0^1 \mathrm{~d} x \int_0^1 \frac{1}{(1+x)(1+y)} \mathrm{d} y$. $\text{D.}$ $\int_0^1 \mathrm{~d} x \int_0^1 \frac{1}{(1+x)\left(1+y^2\right)} \mathrm{d} y$.


下列计算极限的过程正确的是
$\text{A.}$ $\lim _{x \rightarrow+\infty}\left(\sqrt{x^2+1}-x\right)=\lim _{x \rightarrow+\infty} \sqrt{x^2+1}-\lim _{x \rightarrow+\infty} x=\infty-\infty=0$. $\text{B.}$ $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=\lim _{x \rightarrow 0} x \cdot \lim _{x \rightarrow 0} \sin \frac{1}{x}=0$. $\text{C.}$ $\lim _{x \rightarrow+\infty} \frac{\sqrt{x}}{x}=\frac{\lim _{x \rightarrow+\infty} \sqrt{x}}{\lim _{x \rightarrow+\infty} x}=\frac{\infty}{\infty}=1$. $\text{D.}$ $\lim _{x \rightarrow 0} \frac{x^2-x}{x^2+x}=\lim _{x \rightarrow 0} \frac{x(x-1)}{x(x+1)}=\lim _{x \rightarrow 0} \frac{x-1}{x+1}=\frac{\lim _{x \rightarrow 0}(x-1)}{\lim _{x \rightarrow 0}(x+1)}=\frac{-1}{1}=-1$.


设当 $x \rightarrow 0$ 时, $\mathrm{e}^x-\left(a x^2+b x+1\right)$ 是比 $x^2$ 高阶的无穷小, 则
$\text{A.}$ $a=\frac{1}{2}, b=1$. $\text{B.}$ $a=1, b=1$. $\text{C.}$ $a=-\frac{1}{2}, \quad b=-1$. $\text{D.}$ $a=-1, b=1$.


$\lim _{x \rightarrow 0} \frac{a \tan x+b(1-\cos x)}{c \ln (1-2 x)+d\left(1-\mathrm{e}^{-x^2}\right)}=2$, 其中 $a^2+c^2 \neq 0$, 则必有
$\text{A.}$ $b=4 d$. $\text{B.}$ $b=-4 d$. $\text{C.}$ $a=4 c$. $\text{D.}$ $a=-4 c$.


已知级数 $\sum_{n=1}^{\infty}(-1)^{n-1} a_n=2, \sum_{n=1}^{\infty} a_{2 n-1}=5$, 则级数 $\sum_{n=1}^{\infty} a_n$ 等于
$\text{A.}$ 3 $\text{B.}$ 7 $\text{C.}$ 8 $\text{D.}$ 9


设 $u_n \neq 0(n=1,2,3, \cdots)$, 且 $\lim _{n \rightarrow \infty} \frac{n}{u_n}=1$, 则级数 $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{1}{u_n}+\frac{1}{u_{n+1}}\right)$
$\text{A.}$ 发散. $\text{B.}$ 绝对收敛. $\text{C.}$ 条件收敛. $\text{D.}$ 收敛性根据所给条件不能判定.


直线 $L: \frac{x}{3}=\frac{y}{-2}=\frac{z}{7}$ 和平面 $\pi: 3 x-2 y+7 z-8=0$ 的位置关系是
$\text{A.}$ 直线 $L$ 平行于平面 $\pi$ $\text{B.}$ 直线 $L$ 在平面 $\pi$ 上 $\text{C.}$ 直线 $L$ 垂直于平面 $\pi$ $\text{D.}$ 直线 $L$ 与平面 $\pi$ 斜交


下列级数收敛的是
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+4)}$ $\text{B.}$ $\sum_{n=1}^{\infty} \frac{1+n}{n^2+1}$ $\text{C.}$ $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$ $\text{D.}$ $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n(n+1)}}$


设 $I=\int \frac{\mathrm{d} x}{\mathrm{e}^x+\mathrm{e}^{-x}}$, 则 $I=$.
$\text{A.}$ $\mathrm{e}^x-\mathrm{e}^{-x}+C$. $\text{B.}$ $\arctan \mathrm{e}^x+C$. $\text{C.}$ $\arctan \mathrm{e}^{-x}+C$. $\text{D.}$ $\mathrm{e}^x+\mathrm{e}^{-x}+C$.


设 $I=\int \frac{\mathrm{d} x}{1+\sqrt{x}}$, 则 $I=$.
$\text{A.}$ $-2 \sqrt{x}+2 \ln (1+\sqrt{x})+C$ $\text{B.}$ $2 \sqrt{x}+2 \ln (1+\sqrt{x})+C$ $\text{C.}$ $2 \sqrt{x}-2 \ln (1+\sqrt{x})+C$ $\text{D.}$ $-2 \sqrt{x}-2 \ln (1+\sqrt{x})+C$.


设在区间 $[a, b]$ 上 $f(x)>0, f^{\prime}(x) < 0, f^{\prime \prime}(x)>0$,
令 $S_1=\int_a^b-f(x) \mathrm{d} x, S_2=f(b)(b-a), S_3=\frac{1}{2}[f(b)+f(a)](b-a)$, 则有
$\text{A.}$ $S_1 < S_2 < S_3$. $\text{B.}$ $S_2 < S_1 < S_3$. $\text{C.}$ $S_3 < S_1 < S_2$. $\text{D.}$ $S_2 < S_3 < S_1$


$\int_{-1}^0|3 x+1| \mathrm{d} x= $.
$\text{A.}$ $\frac{5}{6}$ $\text{B.}$ $-\frac{5}{6}$. $\text{C.}$ $-\frac{3}{2}$. $\text{D.}$ $\frac{3}{2}$


估计积分值 $A=\int_0^{\frac{1}{2}} \mathrm{e}^{-x^2} \mathrm{~d} x$ 为
$\text{A.}$ $\frac{1}{2} \mathrm{e}^{-\frac{1}{4}} \leqslant A \leqslant \frac{1}{2}$. $\text{B.}$ $\mathrm{e}^{-\frac{1}{4}} \leqslant A \leqslant \frac{1}{2}$. $\text{C.}$ $\frac{1}{2} \mathrm{e}^{-\frac{1}{4}} \leqslant A \leqslant 1$ $\text{D.}$ $-\frac{1}{2} \mathrm{e}^{-\frac{1}{4}} \leqslant A \leqslant \frac{1}{2}$


函数 $f(x)=|x \sin x| \mathrm{e}^{\cos x}, x \in(-\infty,+\infty)$, 是
$\text{A.}$ 单调函数 $\text{B.}$ 周期函数 $\text{C.}$ 偶函数 $\text{D.}$ 有界函数


设 $f(x)=\left\{\begin{array}{ll}\frac{\left(x^3-1\right) \sin x}{|x|\left(1+x^2\right)}, & x \neq 0, \\ 0, & x=0,\end{array} x \in(-\infty,+\infty)\right.$, 则
$\text{A.}$ $f(x)$ 在 $(-\infty,+\infty)$ 内有界 $\text{B.}$ 存在 $X>0$, 当 $|x| < X$ 时, $f(x)$ 有界, 当 $|x|>X$ 时, $f(x)$ 无界 $\text{C.}$ 存在 $X>0$, 当 $|x| < X$ 时, $f(x)$ 无界, 当 $|x|>X$ 时, $f(x)$ 有界 $\text{D.}$ 对任意 $X>0$, 当 $|x| \leqslant X$ 时, $f(x)$ 有界, 但在 $(-\infty,+\infty)$ 内无界


设 $f(x)$ 在 $(-\infty,+\infty)$ 内为连续的奇函数, $a$ 为常数, 则必为偶函数的是
$\text{A.}$ $\int_0^x \mathrm{~d} u \int_a^u t f(t) \mathrm{d} t$ $\text{B.}$ $\int_a^x \mathrm{~d} u \int_0^u f(t) \mathrm{d} t$ $\text{C.}$ $\int_0^x \mathrm{~d} u \int_a^u f(t) \mathrm{d} t$ $\text{D.}$ $\int_a^x \mathrm{~d} u \int_0^u t f(t) \mathrm{d} t$


试卷二维码

分享此二维码到群,让更多朋友参与