填空题 (共 6 题 ),请把答案直接填写在答题纸上
设 $f(x)=(x-1)(x-3)^3(x-5)^5(x-7)^7$, 则 $f^{\prime \prime \prime \prime}(3)=$
方程 $\sum_{i=1}^{100} \frac{1}{x-i}=0$ 实根的个数为
定积分 $I=\int_0^\pi \cos \left(\sin ^2 x\right) \cos x \mathrm{~d} x=$
$\lim _{t \rightarrow 0^{+}} \frac{1}{t^3} \int_0^{\frac{\pi}{4}} \mathrm{~d} \theta \int_0^{\frac{t}{\cos \theta}} \frac{\sin \left(r^2 \sin \theta \cos \theta\right)}{\sin \theta} \mathrm{d} r=$
设 $f(x)=(x-1)(x-3)^3(x-5)^5(x-7)^7$, 则 $f^{\prime \prime \prime}(3)=$
设 $f(x)$ 在 $[0,+\infty)$ 上可导, 且 $f(0)=0$, 其反函数为 $g(x)$, 满足
$$
\int_0^{f(x)} g(t) \mathrm{d} t=(x-1) \mathrm{e}^x+x^2+1,
$$
则 $f(x)$ 的表达式为 $f(x)=$