考研数学
重点科目
其它科目

科数网

高等数学06

数学

填空题 (共 6 题 ),请把答案直接填写在答题纸上
已知常数 $a>0, b c \neq 0$, 使得 $\lim _{x \rightarrow+\infty}\left[x^a \ln \left(1+\frac{b}{x}\right)-x\right]=c$, 求 $a, b, c$.

求 $\lim _{x \rightarrow 0} \frac{\int_0^x(x-t) f(t) \mathrm{d} t}{x \int_0^x f(x-t) \mathrm{d} t}$, 其中 $f(x)$ 连续且 $f(0) \neq 0$.

设 $f(x)$ 是周期为 2 的连续函数:
(1) 证明对任意实数 $t$ ,有 $\int_t^{t+2} f(x) \mathrm{d} x=\int_0^2 f(x) \mathrm{d} x$ ;
(2) 证明 $G(x)=\int_0^x\left[2 f(t)-\int_t^{t+2} f(s) \mathrm{d} s\right] \mathrm{d} t$ 是周期为 2 的周 期函数.

设 $f(x)=\int_1^x \frac{\ln t}{1+t} \mathrm{~d} t$ ,其中 $x>0$ ,求 $f(x)+f\left(\frac{1}{x}\right)$.

设 $f(x)$ 是区间 $\left[0, \frac{\pi}{4}\right]$ 上的单调、可导函数,且满足
$$
\int_0^{f(x)} f^{-1}(t) \mathrm{d} t=\int_0^x t \frac{\cos t-\sin t}{\sin t+\cos t} \mathrm{~d} t
$$
其中 $f^{-1}$ 是 $f$ 的反函数,求 $f(x)$.

设 $f(x)$ 在 $(-\infty,+\infty)$ 内满足
$$
f(x)=f(x-\pi)+\sin x ,
$$
且 $f(x)=x, x \in[0, \pi)$ ,计算 $I=\int_\pi^{3 \pi} f(x) \mathrm{d} x$.

试卷二维码

分享此二维码到群,让更多朋友参与