考研数学
重点科目
其它科目

科数网

几何与代数期末模拟试题

数学

单选题 (共 6 题 ),每题只有一个选项正确
设 $A, B$ 都是可逆矩阵, 且 $A$ 与 $B$ 相似, 则下列结论不一定正确的是
$\text{A.}$ $ A^T$ 与 $B^T$ 相似 $\text{B.}$ $A^{-1}$ 与 $B^{-1}$ 相似 $\text{C.}$ $ A+A^{-1}$ 与 $B+B^{-1}$ 相似 $\text{D.}$ $A+A^T$ 与 $B+B^T$ 相似

设 $\boldsymbol{A}$ 为 2 阶实对称矩阵, 特征值为 $\lambda_1, \lambda_2, \boldsymbol{B}$ 为 2 阶正定矩阵, 特征值为 $\mu_1, \mu_2$. 记 $M=\max _{\boldsymbol{x} \neq 0} \frac{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{x}}, m=\min _{\boldsymbol{x} \neq 0} \frac{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A x}}{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{x}}$, 则 $M m=(\quad)$
$\text{A.}$ $\lambda_1 \lambda_2$. $\text{B.}$ $\frac{\mu_1 \mu_2}{\lambda_1 \lambda_2}$. $\text{C.}$ $\frac{\lambda_1 \lambda_2}{\mu_1 \mu_2}$. $\text{D.}$ 由已知条件不能确定.

已知 $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$ 都是 4 阶非零矩阵, 且 $\boldsymbol{A B C D}=\boldsymbol{O}$, 如果 $|\boldsymbol{B C}| \neq 0$, 记 $r(\boldsymbol{A})+r(\boldsymbol{B})+r(\boldsymbol{C})+r(\boldsymbol{D})$ $=r$, 则 $r$ 的最大值是
$\text{A.}$ 11 $\text{B.}$ 12 $\text{C.}$ 13 $\text{D.}$ 14

设 $\boldsymbol{A}, \boldsymbol{B}$ 为 3 阶矩阵且 $\boldsymbol{A}$ 不可逆, 又 $\boldsymbol{A B}+2 \boldsymbol{B}=\boldsymbol{O}$ 且 $r(\boldsymbol{B})=2$, 则 $|\boldsymbol{A}+4 \boldsymbol{E}|=$.
$\text{A.}$ 8 $\text{B.}$ 16 $\text{C.}$ 12 $\text{D.}$ 0

已知 $\boldsymbol{A}$ 是 3 阶矩阵且 $|\boldsymbol{A}|=-\frac{1}{4}$, 则 $\left|\left(\frac{1}{5} \boldsymbol{A}\right)^{-1}+(2 \boldsymbol{A})^*\right|=$
$\text{A.}$ 16 $\text{B.}$ -16 $\text{C.}$ 256 $\text{D.}$ -256

设 $A, B$ 为 $n$ 阶矩阵, $E$ 为单位矩阵, 若方程组 $A x=0$ 与 $B x=0$ 同解, 则
$\text{A.}$ 方程组 $\left[\begin{array}{ll}A & O \\ E & B\end{array}\right] y=0$ 只有零解. $\text{B.}$ 方程组 $\left[\begin{array}{cc}E & A \\ O & A B\end{array}\right] y=0$ 只有零解. $\text{C.}$ 方程组 $\left[\begin{array}{ll}A & B \\ O & B\end{array}\right] y=0$ 与 $\left[\begin{array}{ll}B & A \\ O & A\end{array}\right] y=0$ 同解. $\text{D.}$ 方程组 $\left[\begin{array}{cc}A B & B \\ O & A\end{array}\right] y=0$ 与 $\left[\begin{array}{cc}B A & A \\ O & B\end{array}\right] y=0$ 同解.

试卷二维码

分享此二维码到群,让更多朋友参与