一、单选题 (共 12 题,每小题 5 分,共 50 分,每题只有一个选项正确)
当 $x \rightarrow+\infty$ 时, $f(x)=\left(x^3-x^2+\frac{1}{2} x\right) \mathrm{e}^{\frac{1}{x}}-\sqrt{x^6+1}-\frac{1}{6}$ 是 $g(x)=\alpha x^\beta$ 等价无穷小, 则 $\alpha, \beta=$
$\text{A.}$ $\alpha=\frac{1}{2}, \beta=-1$
$\text{B.}$ $\alpha=\frac{1}{8}, \beta=-1$
$\text{C.}$ $\alpha=\frac{1}{8}, \beta=-2$
$\text{D.}$ $\alpha=\frac{1}{2}, \beta=-2$
当 $x \rightarrow 0$ 时, $x-\ln \left(x+\sqrt{1+x^2}\right) \sim c x^k$, 则 $c, k$ 分别是
$\text{A.}$ $\frac{1}{6}, 3$.
$\text{B.}$ $\frac{1}{6}, 2$.
$\text{C.}$ $\frac{1}{3}, 2$.
$\text{D.}$ $\frac{1}{3}, 3$.
设函数 $f(x)=\left\{\begin{array}{cc}e^{a x} & x \leq 0 \\ b\left(1-x^2\right) & x>0\end{array}\right.$ 处处可导, 那么
$\text{A.}$ $a=b=1$
$\text{B.}$ $a=-2, b=-1$
$\text{C.}$ $a=0, b=1$
$\text{D.}$ $a=1, b=0$
已知当 $x \rightarrow 0$ 时, $\left(\mathrm{e}^{\sin ^2 x}-1\right) \ln \left(1+\sin ^2 x\right)$ 是比 $x \sin ^n x$ 高阶的无穷小量, 而 $x \tan x^n$ 是比 $\sqrt{1+\tan x^2}-1$ 高阶的无穷小量, 则正整数 $n=$
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
设当 $x \rightarrow 0$ 时, $\mathrm{e}^x-\left(a x^2+b x+1\right)$ 是比 $x^2$ 高阶的无穷小, 则
$\text{A.}$ $a=\frac{1}{2}, b=1$.
$\text{B.}$ $a=1, b=1$.
$\text{C.}$ $a=-\frac{1}{2}, \quad b=-1$.
$\text{D.}$ $a=-1, b=1$.
$\lim _{x \rightarrow 0} \frac{a \tan x+b(1-\cos x)}{c \ln (1-2 x)+d\left(1-\mathrm{e}^{-x^2}\right)}=2$, 其中 $a^2+c^2 \neq 0$, 则必有
$\text{A.}$ $b=4 d$.
$\text{B.}$ $b=-4 d$.
$\text{C.}$ $a=4 c$.
$\text{D.}$ $a=-4 c$.
若 $\lim _{x \rightarrow 0} \frac{\cos \left(x e^x\right)-e^{-\frac{x^2}{2} e^{2 x}}}{x^\alpha}=\beta \neq 0$ 则
$\text{A.}$ $\alpha=2, \beta=-1$.
$\text{B.}$ $\alpha=3, \beta=-\frac{1}{6}$.
$\text{C.}$ $\alpha=4, \beta=-\frac{1}{12}$.
$\text{D.}$ $\alpha=5, \beta=-\frac{1}{8}$.
若 $\lim _{x \rightarrow 0} \frac{a x^2+b x+1-e^{x^2-2 x}}{x^2} =2$, 则
$\text{A.}$ $a={5}, b=-2$.
$\text{B.}$ $a=-2, b=5 $
$\text{C.}$ $a={2}, b=0$.
$\text{D.}$ $a={4}, b=-4$.
当 $x \rightarrow 0^{+}$时, $(1+x)^{\frac{1}{x}}-\left(e+a x+b x^2\right)$ 是比 $x^2$ 高阶的无穷小, 则
$\text{A.}$ $a=\frac{e}{2}, b=-\frac{11}{24} e$.
$\text{B.}$ $a=-\frac{e}{2}, b=\frac{11}{24} e$.
$\text{C.}$ ${a}={e}, {b}=\frac{{e}}{2}$.
$\text{D.}$ ${a}={e}, {b}=-\frac{{e}}{{2}}$.
函数 $f(x)=\frac{(x+1)|x-1|}{e^{\frac{1}{x-2}} \ln |x|}$ 的可去间断点的个数为
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
二、填空题 (共 3 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
已知常数 $a>0, b c \neq 0$, 使得 $\lim _{x \rightarrow+\infty}\left[x^a \ln \left(1+\frac{b}{x}\right)-x\right]=c$, 求 $a, b, c$.
已知 $a, b$ 为常数, 求极限 $\lim _{x \rightarrow+\infty}\left(\frac{x^2}{(x-a)(x-b)}\right)^x=$
三、解答题 ( 共 2 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
已知 $\lim _{x \rightarrow 1} \frac{a x^2+x-3}{x-1}=b$, 求常数 $a, b$ 的值.
求极限 $\lim _{x \rightarrow 0} \frac{1}{x^4}\left[\ln \left(1+\sin ^2 x\right)-6(\sqrt[3]{2-\cos x}-1)\right]$