2024全国硕士研究生招生考试考研数学(三)模拟试题及详细参考解答

数学

本试卷总分150分,考试时间120分钟。
注意事项:
1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。

3. 考试结束后, 将本试卷和答题卡一并交回。

4.本试卷由kmath.cn自动生成。

学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 10 题 ),每题只有一个选项正确
$x \rightarrow 0^{+}$时, 下列无穷小量的阶数从低到高的排序是 ( )
(1). 由 $\left\{\begin{array}{l}x=t^3 \\ y=t^2\end{array}\right.$ 确定的函数 $y=f(x)$
(2). $\ln \left(-x+\sqrt{1+x^2}\right)$
(3). $\int_0^{\sin x} \ln \left(1+\sqrt{t^2}\right) \mathrm{d} t$
(4). $\frac{1-\cos \sqrt{x}}{\sqrt[4]{x}}$
$\text{A.}$ (1)(4)(2)(3) $\text{B.}$ (2)(4)(1)(3) $\text{C.}$ (1)(4)(3)(2) $\text{D.}$ (4)(2)(1)(3)

如果一个二元函数 $f(x, y)$ 可以写为一个关于 $x$ 的函数 $g(x)$ 乘以一个关于 $y$ 的函数 $h(y)$, 也就是 $f(x, y)=g(x) h(y)$ 的形式, 我们把符合这样的情况的函数叫做 “二元函数 $f(x, y)$ 关于变量 $x, y$ 可分离”, 假定下列的函数中 $f(x, y)$ 具有二阶连续偏导数, 则下列说法中不正确的是 ( )
(1). 若 $f(x, y)=x y \mathrm{e}^{x+y}$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
(2). 若 $f(x, y)=(x+y) \mathrm{e}^{x y}$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
(3). 若 $f(x, y)>0$ 并且 $\frac{\partial^2(\ln f(x, y))}{\partial x \partial y}=0$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
(4.) 若 $f(x, y)>0$ 并且满足 $\frac{\partial f}{\partial x} \cdot \frac{\partial f}{\partial y}=\frac{\partial^2 f}{\partial x \partial y} \cdot f(x, y)$, 则 $f(x, y)$ 关于变量 $x, y$ 可分离
$\text{A.}$ (2) $\text{B.}$ (1)(3)(4) $\text{C.}$ (2)(4) $\text{D.}$ (1)(3)

记 $I=\int_0^1 \frac{\sin x}{x} \mathrm{~d} x, J=\int_0^1 \frac{\tan x}{x} \mathrm{~d} x$, 则
$\text{A.}$ $\sin 1>I$ $\text{B.}$ $I>1$ $\text{C.}$ $J < \tan 1$ $\text{D.}$ $J < 1$

下列有关定义在 $(-\infty,+\infty)$ 上的可导函数 $f(x)$ 的说法正确的是
$\text{A.}$ 若 $\lim _{x \rightarrow+\infty} f(x)=A$, 并且 $\exists x_0 \in(0,+\infty)$, 使得 $f\left(x_0\right)>A, \exists x_1 \in(0,+\infty)$ 并且 $x_0 \neq x_1$, 使得 $f\left(x_1\right) < A$, 那么 $f(x)$ 在 $(0,+\infty)$ 内有最大值和最小值。 $\text{B.}$ 若 $f(x)$ 是奇函数, 并且 $\lim _{x \rightarrow+\infty} f^{\prime}(x)=A(\neq 0)$, 则 $f(x)$ 的斜渐近线条数一定是偶数。 $\text{C.}$ 若 $f^{\prime}(x)=f(x)+\int_0^x f(t) \mathrm{d} t$ 并且 $f(0)=1$, 则 $f^{\prime \prime}(0)=2$ $\text{D.}$ 令 $g(x)=\left\{\begin{array}{l}\frac{f(x)-f\left(x_0\right)}{x-x_0}, x \neq x_0 \\ f^{\prime}\left(x_0\right), x=x_0\end{array}\right.$, 其中 $x_0 \in(-\infty,+\infty)$, 则 $g^{\prime}\left(x_0\right)$ 存在

设 $m, n$ 均为正整数, 并且 $m < n$, 设 $\boldsymbol{A}$ 为 $m \times m$ 的矩阵, $\boldsymbol{B}$ 为 $m \times n$ 的矩阵, $\boldsymbol{C}$ 为 $n \times m$ 的矩阵, 已知 $\boldsymbol{A B C}=\boldsymbol{E}$, 设 $\boldsymbol{A}^*$ 为 $\boldsymbol{A}$ 的伴随矩阵, 则下列说法正确的个数有 ( ) 个
(1). $\boldsymbol{B C A}=\boldsymbol{E}$
(2). $C A B=E$
(3). $C^* B^* A^*=E$
(4). $\boldsymbol{A}^T \boldsymbol{C}^T \boldsymbol{B}^T=\boldsymbol{E}$
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4

下列说法中正确的是
$\text{A.}$ 若 3 个 3 维列向量 $\alpha_1, \alpha_2, \alpha_3$ 两两正交, 则 $\alpha_1, \alpha_2, \alpha_3$ 线性无关 $\text{B.}$ 若 3 个 3 维列向量 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, 则 $\alpha_1, \alpha_2, \alpha_3$ 两两正交 $\text{C.}$ 若 3 个 2 维列向量 $\alpha_1, \alpha_2, \alpha_3$ 两两正交, 则 $\alpha_1, \alpha_2, \alpha_3$ 中至少一个为 0 $\text{D.}$ 若 3 个 2 维列向量 $\alpha_1, \alpha_2, \alpha_3$ 两两正交, 则 $\alpha_1, \alpha_2, \alpha_3$ 中只能有一个为 0

已知方程组 $\left\{\begin{array}{l}a_1 x+b_1 y+c_1 z=d_1 \\ a_2 x+b_2 y+c_2 z=d_2 \\ a_3 x+b_3 y+c_3 z=d_3\end{array}\right.$ 无解, 记 $\boldsymbol{A}=\left[\begin{array}{lll}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}d_1 \\ d_2 \\ d_3\end{array}\right],\left(\begin{array}{ll}\boldsymbol{X} & \boldsymbol{Y}\end{array}\right)$ 为分块 矩阵, 则下列说法正确的是 ( )
(1). $\boldsymbol{A x}=\mathbf{0}$ 有无穷多解
(2). 若 $R(\boldsymbol{A})=2$, 则 $\boldsymbol{A}^* \boldsymbol{b}=\mathbf{0}$
(3). $R(Ab) -R(A)=2$ 是可能成立的
(4). $\boldsymbol{b}$ 的模长一定不是 0
$\text{A.}$ (1)(4) $\text{B.}$ (1)(2)(3) $\text{C.}$ (1)(3) $\text{D.}$ (2)(4)

设 $A, B$ 为两个事件并且 $0 < P(A) < 1,0 < P(B) < 1$, 那么下列说法中不正确的是
$\text{A.}$ $P(A \mid B)>P(A \mid \bar{B})$ 的充要条件是 $P(A B)>P(A) P(B)$ $\text{B.}$ 若满足 $P(A \mid \bar{B})=P(B \mid \bar{A})$, 则 $P(A)=P(B)$ $\text{C.}$ 若满足 $P(A \mid \bar{B})=P(B \mid \bar{A})$, 则 $P(A)=P(B)$ 或者 $P(A \bigcup B)=1$ $\text{D.}$ 若 $P(A \mid \bar{B})+P(\bar{A} \mid B)=1$, 则 $A$ 和 $B$ 独立。

设随机变量 $X$ 的分布函数为 $F_X(x)=\left\{\begin{array}{l}0, x < 3 \\ 0.8,3 \leqslant x < 5 \\ 1, x \geqslant 5\end{array}\right.$, 随机变量 $Y$ 的分布函数为 $F_Y(x)=$ $\left\{\begin{array}{l}0, x < 5 \\ 0.2,5 \leqslant x < 7 \\ 1, x \geqslant 7\end{array}\right.$, 那么下列说法正确的是
$\text{A.}$ $P(X+Y=10)=0.68$ $\text{B.}$ 若 $X$ 与 $Y$ 不相关, 则 $X$ 与 $Y$ 独立 $\text{C.}$ $X+Y=10$ $\text{D.}$ $P(X=3, Y=7)=0.64$

设 $(X, Y) \sim N\left(\mu_1, \mu_2 ; \sigma_1^2, \sigma_2^2 ; \rho\right)$, 其中 $\sigma_1>0, \sigma_2>0$, 则下列说法中正确的个数有 ( ) 个。
(1). 令 $\left\{\begin{array}{l}U=\frac{X-\mu_1}{\sigma_1} \\ V=\frac{Y-\mu_2}{\sigma_2}\end{array}\right.$, 则 $(U, V) \sim N(0,0 ; 1,1 ; \rho)$
(2). (1)的条件下 $E\left((U-V)^2\right)=\rho$
(3). (1)的条件下, $V=v$ 的条件下: $U \sim N\left(\rho v, 1-\rho^2\right)$
(4). (1)的条件下, 若 $\rho=0$, 那么 $E\left(U^4 V^4\right)=3$
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4

填空题 (共 6 题 ),请把答案直接填写在答题纸上
$\int_1^{+\infty} \frac{x^2}{x^6+1} \mathrm{~d} x=$


方程 $\arcsin x=k x$ 在 $x \in[0,1]$ 只有一个解, 那么 $k$ 的取值范围是


$\sum_{n=0}^{+\infty} \frac{n !+1}{(n+2) !}=$


已知某商品的需求弹性为 $\eta=4 p^4, p$ 为商品的价格, 市场对该商品的最大需求量为 1 (单位: 万 元), 则需求函数 $Q=$


设 $\boldsymbol{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1\end{array}\right]$, 则二次型 $\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}$ 的正惯性指数为


设事件 $A, B, C$ 两两独立, 并且 $P(A)=p, P(B)=2 p, P(C)=6 p$, 且 $P(A B C)=0$, 那么能够 满足上述情况的 $p$ 的最大值是


解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设 $f(x)$ 二阶可导并且 $f(x)$ 具有反函数 $f^{-1}(x), f(0)=0, f^{\prime}(0)=1$, 求 $\lim _{x \rightarrow 0}\left[\frac{1}{f(x)}-\frac{1}{f^{-1}(x)}\right]$ 。



若二元函数 $f(u, v)$ 对每个变量都具有二阶连续偏导数, 并且满足 $u \frac{\partial f}{\partial u}+v \frac{\partial f}{\partial v}=4 f(u, v)$, 并且 满足 $\frac{\partial^2 f}{\partial u^2}+\frac{\partial^2 f}{\partial v^2}=u^2+v^2$ 。
(1) 求证: $\left\{\begin{array}{l}u^2 \frac{\partial^2 f}{\partial u^2}+2 u v \frac{\partial^2 f}{\partial u \partial v}+v^2 \frac{\partial^2 f}{\partial v^2}=12 f(u, v) \\ v^2 \frac{\partial^2 f}{\partial u^2}-2 u v \frac{\partial^2 f}{\partial u \partial v}+u^2 \frac{\partial^2 f}{\partial v^2}=\left(u^2+v^2\right)^2-12 f(u, v)\end{array}\right.$
(2) 记 $g(x, y)=f\left(\mathrm{e}^{\lambda x} \cos y, \mathrm{e}^{\lambda x} \sin y\right)$, 其中 $\lambda$ 是一个常数, 求解 $\frac{\partial^2 g}{\partial x^2}+\frac{\partial^2 g}{\partial y^2}$ 。



计算 $\iint_D\left(x y \mathrm{e}^{x^2+y^2}+x^2\right) \mathrm{d} x \mathrm{~d} y$, 其中 $D: x^2+y^2 < |x|+|y|$ 。



设函数 $f(x)$ 的定义域为全体实数, 并且 $f(x)$ 具有二阶导数, 并且 $f^{\prime \prime}(x)>0, f^{\prime}(x)>0$, 在同 一个坐标系下, 曲线 $y=f(x)$ 和直线 $y=x$ 有且只有两个交点 $P_1(a, f(a))$ 和 $P_2(b, f(b))$, 其中 $a < b$ 。
(1) 求证: $f^{\prime}(a) < 1 < f^{\prime}(b)$ 。并且 $\forall x < a$, 一定有 $f(x)>x ; \forall a < x < b$, 一定有 $f(x) < x$ 。
(2) 设数列 $\left\{x_n\right\}$ 满足 $x_{n+1}=f\left(x_n\right)$, 求证: 当 $x_1 < a$ 时, $\lim _{n \rightarrow \infty} x_n=a$; 当 $a < x_1 < b$ 时, $\lim _{n \rightarrow \infty} x_n=a$ 。



设 $\boldsymbol{A}$ 为三阶方阵, 并有可逆矩阵 $\boldsymbol{P}=\left(\boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{p}_3\right), \boldsymbol{p}_i(i=1,2,3)$ 为三维列向量, 使得 $\boldsymbol{P}^{-1} \boldsymbol{A P}=$ $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
(1) 证明: $p_1, p_2$ 为 $(E-A) x=0$ 的解, $p_3$ 为 $(E-A) x=-p_2$ 的解, 且 $A$ 不可相似对角化;
(2) 当 $\boldsymbol{A}=\left[\begin{array}{ccc}2 & -1 & -1 \\ 2 & -1 & -2 \\ -1 & 1 & 2\end{array}\right]$ 时, 求可逆矩阵 $\boldsymbol{P}$, 使得 $\boldsymbol{P}^{-1} \boldsymbol{A P}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$



设总体 $X \sim F(x ; \theta)=\left\{\begin{array}{l}0, x < 1, \\ \theta, 1 \leqslant x < 2, \\ 2 \theta, 2 \leqslant x < 3, \\ 1, x>3\end{array} \quad\left(0 < \theta < \frac{1}{2}\right)\right.$, 一个来自总体 $X$ 的简单随机样本的经验
分布函数 $F_8(x)$ 的观察值为 $F_8(x)=\frac{1}{8}\left\{\begin{array}{l}0, x < 1 \\ 3,1 \leqslant x < 2 \\ 5,2 \leqslant x < 3 \\ 8, x \geqslant 3\end{array}\right.$, 求 $\theta$ 的矩估计值和极大似然估计值。