单选题 (共 3 题 ),每题只有一个选项正确
微分方程 $x y^{\prime}-y \ln y=0$ 的通解是
$\text{A.}$ $y=e^{c x}$
$\text{B.}$ $y=c x$
$\text{C.}$ $y=e^x+c$
$\text{D.}$ $y=e^x+c x$
设方程 $\ln x=k x$ 只有两个正实根, 则 $k$ 的取值范围为
$\text{A.}$ $(-\infty, e)$
$\text{B.}$ $\left(0, \frac{1}{\mathrm{e}}\right)$
$\text{C.}$ $\left(\frac{1}{\mathrm{e}},+\infty\right)$
$\text{D.}$ $\left(\frac{1}{\mathrm{e}}, 1\right)$
设 $f(x)$ 满足微分方程 $f^{\prime \prime}(x)+x f^{\prime}(x)=\ln (1+x)-\frac{\arctan x}{x+1}$, 且 $f(x)$ 有驻点 $x=x_0>0$, 则
$\text{A.}$ $x_0$ 不是 $f(x)$ 的极值点.
$\text{B.}$ $x_0$ 是 $f(x)$ 的极大值点.
$\text{C.}$ $x_0$ 是 $f(x)$ 的极小值点.
$\text{D.}$ 无法判断 $x_0$ 是否是 $f(x)$ 的极值点.