后保研高等数学微分方程试卷

数学



单选题 (共 3 题 ),每题只有一个选项正确
微分方程 $x y^{\prime}-y \ln y=0$ 的通解是
$\text{A.}$ $y=e^{c x}$ $\text{B.}$ $y=c x$ $\text{C.}$ $y=e^x+c$ $\text{D.}$ $y=e^x+c x$

设方程 $\ln x=k x$ 只有两个正实根, 则 $k$ 的取值范围为
$\text{A.}$ $(-\infty, e)$ $\text{B.}$ $\left(0, \frac{1}{\mathrm{e}}\right)$ $\text{C.}$ $\left(\frac{1}{\mathrm{e}},+\infty\right)$ $\text{D.}$ $\left(\frac{1}{\mathrm{e}}, 1\right)$

设 $f(x)$ 满足微分方程 $f^{\prime \prime}(x)+x f^{\prime}(x)=\ln (1+x)-\frac{\arctan x}{x+1}$, 且 $f(x)$ 有驻点 $x=x_0>0$, 则
$\text{A.}$ $x_0$ 不是 $f(x)$ 的极值点. $\text{B.}$ $x_0$ 是 $f(x)$ 的极大值点. $\text{C.}$ $x_0$ 是 $f(x)$ 的极小值点. $\text{D.}$ 无法判断 $x_0$ 是否是 $f(x)$ 的极值点.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。