单选题 (共 3 题 ),每题只有一个选项正确
设有直线 $L:\left\{\begin{array}{l}x-y-4 z+1=0 \\ x+y-3=0\end{array}\right.$, 曲面 $z=x^2-y^2+z^2$ 在点 $(1,1,1)$ 处的切平面П, 则 直线 $L$ 与平面 $\Pi$ 的位置关系是:
$\text{A.}$ $L \subset \Pi$
$\text{B.}$ $L / / \Pi$
$\text{C.}$ $L \perp \Pi$
$\text{D.}$ $L$ 与 斜交
直线 $L: \frac{x}{3}=\frac{y}{-2}=\frac{z}{7}$ 和平面 $\pi: 3 x-2 y+7 z-8=0$ 的位置关系是
$\text{A.}$ 直线 $L$ 平行于平面 $\pi$
$\text{B.}$ 直线 $L$ 在平面 $\pi$ 上
$\text{C.}$ 直线 $L$ 垂直于平面 $\pi$
$\text{D.}$ 直线 $L$ 与平面 $\pi$ 斜交
设 $z=f(x, y)$ 在点 $(1,1)$ 处可微, 且 $\lim _{\substack{x \rightarrow 1 \\ y \rightarrow 1}} \frac{f(x, y)-f(1,1)-2 x-y+3}{\sqrt{(x-1)^2+(y-1)^2}}=0$, 则 $z=f(x, y)$ 在 $(1,1)$ 点 沿 $\boldsymbol{l}=\{1,2\}$ 方向的方向导数为
$\text{A.}$ $-\frac{4}{\sqrt{5}}$
$\text{B.}$ $\frac{4}{\sqrt{5}}$
$\text{C.}$ -1
$\text{D.}$ 1