单选题 (共 3 题 ),每题只有一个选项正确
当 $x \rightarrow \infty$ 时, $\left(1-\frac{1}{x}\right)^x$ 的极限为 ( )。
$\text{A.}$ $e$
$\text{B.}$ $\frac{1}{e}$
$\text{C.}$ 1
$\text{D.}$ 不存在
$x=0$ 是函数 $f(x)=\frac{\arctan x}{x}$ 的
$\text{A.}$ 连续点;
$\text{B.}$ 可去间断点;
$\text{C.}$ 跳跃间断点;
$\text{D.}$ 无穷间断
求 $\lim _{n \rightarrow \infty} \frac{\sin \frac{\pi}{n}}{n+1}+\frac{\sin \frac{2 \pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin \frac{n \pi}{n}}{n+\frac{1}{n}}$.
$\text{A.}$ 1;
$\text{B.}$ $\frac{2}{\pi}$
$\text{C.}$ $\frac{\pi}{2}$
$\text{D.}$ 0