单选题 (共 3 题 ),每题只有一个选项正确
当 $x \rightarrow \infty$ 时, $\left(1-\frac{1}{x}\right)^x$ 的极限为 ( )。
$\text{A.}$ $e$
$\text{B.}$ $\frac{1}{e}$
$\text{C.}$ 1
$\text{D.}$ 不存在
$x=0$ 是函数 $f(x)=\frac{\arctan x}{x}$ 的
$\text{A.}$ 连续点;
$\text{B.}$ 可去间断点;
$\text{C.}$ 跳跃间断点;
$\text{D.}$ 无穷间断
设对任意的 $x$, 总有 $\varphi(x) \leq f(x) \leq g(x)$, 且 $\lim _{x \rightarrow \infty}|g(x)-\varphi(x)|=0$ 则 $\lim _{x \rightarrow \infty} f(x)$
$\text{A.}$ 存在且等于零
$\text{B.}$ 存在但不等于零
$\text{C.}$ 一定不存在
$\text{D.}$ 不一定存在