后保研高等数学多元函数积分学试卷

数学



单选题 (共 3 题 ),每题只有一个选项正确
设 $D=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 2\}, I=\iint_D(x+y+1) d \sigma$, 则正确的是
$\text{A.}$ $1 \leq I \leq 8$ $\text{B.}$ $2 \leq I \leq 8$ $\text{C.}$ $1 \leq I \leq 4$ $\text{D.}$ $2 \leq I \leq 4$

设 $f(x, y)$ 为连续函数,且 $D=\left\{(x, y) \mid x^2+y^2 \leq t^2\right\}$ ,则 $\lim _{t \rightarrow 0^{+}} \frac{1}{\pi t^2} \iint_D f(x, y) d \sigma=(\quad)$
$\text{A.}$ $f(0,0)$ $\text{B.}$ $-f(0,0)$ $\text{C.}$ $f^{\prime}( 0 , 0 )$ $\text{D.}$ 不存在

交换积分次序 $\int_{-1}^0 d y \int_{1-y}^2 f(x, y) d x=(\quad)$
$\text{A.}$ $\int_1^2 d x \int_0^{1-x} f(x, y) d y$ $\text{B.}$ $\int_1^2 d x \int_{1-x}^0 f(x, y) d y$ $\text{C.}$ $\int_0^2 d x \int_0^{1-x} f(x, y) d y$ $\text{D.}$ $\int_0^2 d y \int_{1-x}^0 f(x, y) d x$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。