单选题 (共 3 题 ),每题只有一个选项正确
设 $D=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 2\}, I=\iint_D(x+y+1) d \sigma$, 则正确的是
$\text{A.}$ $1 \leq I \leq 8$
$\text{B.}$ $2 \leq I \leq 8$
$\text{C.}$ $1 \leq I \leq 4$
$\text{D.}$ $2 \leq I \leq 4$
设 $f(x, y)$ 为连续函数,且 $D=\left\{(x, y) \mid x^2+y^2 \leq t^2\right\}$ ,则 $\lim _{t \rightarrow 0^{+}} \frac{1}{\pi t^2} \iint_D f(x, y) d \sigma=(\quad)$
$\text{A.}$ $f(0,0)$
$\text{B.}$ $-f(0,0)$
$\text{C.}$ $f^{\prime}( 0 , 0 )$
$\text{D.}$ 不存在
交换积分次序 $\int_{-1}^0 d y \int_{1-y}^2 f(x, y) d x=(\quad)$
$\text{A.}$ $\int_1^2 d x \int_0^{1-x} f(x, y) d y$
$\text{B.}$ $\int_1^2 d x \int_{1-x}^0 f(x, y) d y$
$\text{C.}$ $\int_0^2 d x \int_0^{1-x} f(x, y) d y$
$\text{D.}$ $\int_0^2 d y \int_{1-x}^0 f(x, y) d x$