清空
下载
撤销
重做
查看原题
设 $f(x, y)$ 为连续函数,且 $D=\left\{(x, y) \mid x^2+y^2 \leq t^2\right\}$ ,则 $\lim _{t \rightarrow 0^{+}} \frac{1}{\pi t^2} \iint_D f(x, y) d \sigma=(\quad)$
A. $f(0,0)$
B. $-f(0,0)$
C. $f^{\prime}( 0 , 0 )$
D. 不存在
老师可以直接用手写笔在屏幕上讲解 讲解完毕后,可以点击下载把讲解结果保存下来 保存的图片可以在本站利用“识别”公式功能生成试题
不再提醒