解答题 (共 3 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设 $A =\left[\begin{array}{ccc}1 & -2 & 3 \\ -1 & 2 & -3 \\ 1 & 4 & -3\end{array}\right], \xi _1=\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right]$, 记满足 $A \xi _2=2 \xi _1, A ^2 \xi _3=6 \xi _1$ 的向量为 $\xi _2, \xi _3$ ,证明:对任意满足条件的向量 $\xi_2, \xi_3$ ,都有 $\xi_1, \xi_2, \xi_3$ 线性无关.
设
$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$
为实数域 $R$ 上的 $3 \times 3$ 不可逆方阵. 若 $A$ 的伴随矩阵 $A^*$ 为
$$
A^*=\left(\begin{array}{lll}
a_{11}^2 & a_{12}^2 & a_{13}^2 \\
a_{21}^2 & a_{22}^2 & a_{23}^2 \\
a_{31}^2 & a_{32}^2 & a_{33}^2
\end{array}\right),
$$
求 $A$.
若二次型 $f\left(x_1, x_2, x_3\right)=x_1^2+2 x_2^2+a x_3^2+2 x_1 x_2-2 x_1 x_3$ 经可逆线性变换 $x = P y$ 化为二次型 $g\left(y_1, y_2, y_3\right)=y_1^2+5 y_2^2+8 y_3^2+4 y_1 y_2-4 y_1 y_3-4 y_2 y_3$, 求 $a$ 与矩阵 $P$.