高阶导数



单选题 (共 3 题 ),每题只有一个选项正确
已知函数 $f(x)$ 具有任意阶导数, 且 $f^{\prime}(x)=[f(x)]^{2}$, 则当 $n$ 为大于 2 的正整数时, $f(x)$ 的 $n$ 阶导数 $f^{n}(x)$ 是
$\text{A.}$ $n ![f(x)]^{n+1}$ $\text{B.}$ $n[f(x)]^{n+1}$ $\text{C.}$ $[f(x)]^{2 n}$ $\text{D.}$ $n ![f(x)]^{2 n}$

设 $f(x)=3 x^{3}+x^{2}|x|$, 则使 $f^{(n)}(0)$ 存在的最高阶数 $n$ 为 ( )
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

设函数 $f(x)=\left(e^x-1\right)\left(e^{2 x}-2\right) \cdots\left(e^{n x}-n\right)$ ,其中 $n$为正整数,则 $f^{\prime}(0)=$
$\text{A.}$ $(-1)^{n-1}(n-1)$ ! $\text{B.}$ $(-1)^n(n-1)$ ! $\text{C.}$ $(-1)^{n-1} n$ ! $\text{D.}$ $(-1)^n n$ !

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。