试卷具体名8称

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、解答题 ( 共 3 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
若二次型 $f\left(x_1, x_2, x_3\right)=x_1^2+2 x_2^2+a x_3^2+2 x_1 x_2-2 x_1 x_3$ 经可逆线性变换 $x = P y$ 化为二次型 $g\left(y_1, y_2, y_3\right)=y_1^2+5 y_2^2+8 y_3^2+4 y_1 y_2-4 y_1 y_3-4 y_2 y_3$, 求 $a$ 与矩阵 $P$.



设 3 阶实对称矩阵 $A$ 的秩为 $2, \lambda_1=\lambda_2=6$ 是 $A$ 的二重特征值。若 $\alpha _1=(1, a, 0)^{ T }, \alpha _2=(2$, $1,1)^{ T }, \alpha _3=(0,1,-1)^{ T }$ 都是矩阵 $A$ 属于特征值 6 的特征向量.
(I) 求 $a$ 的值;
(II) 求 $A$ 的另一特征值和对应的特征向量;
(III) 若 $\beta =(-2,2,-1)^{ T }$, 求 $A ^n \beta$.



若二次型 $f\left(x_1, x_2, x_3\right)=x_1^2+2 x_2^2+x_3^2-2 x_1 x_3$ 经正交变换 $x = Q y$ 化为二次型 $g\left(y_1, y_2, y_3\right)=$ $y_1^2+y_2^2+a y_3^2+2 y_1 y_2$, 求 $a$ 与矩阵 $Q$.



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷