考研数学
重点科目
其它科目

科数网

后保研线性代数行列式试卷

数学

单选题 (共 6 题 ),每题只有一个选项正确
设点 $P_i\left(x_i, y_i\right)(i=1,2,3)$ 为 $x O y$ 平面上三个不同的点, $\boldsymbol{A}=\left(\begin{array}{lll}x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1\end{array}\right)$, 则 三点 $P_1, P_2, P_3$ 在同一直线上的充分必要条件是
$\text{A.}$ $|\boldsymbol{A}|=0$. $\text{B.}$ $|\boldsymbol{A}| \neq 0$. $\text{C.}$ $r(\boldsymbol{A})=1$. $\text{D.}$ $r(\boldsymbol{A})=2$.

设 $\boldsymbol{A}, \boldsymbol{B}$ 为 $n$ 阶可逆矩阵, 且满足 $\boldsymbol{A B}=\boldsymbol{A}+\boldsymbol{B}$, 则下面结论:
(1) $\boldsymbol{A}+\boldsymbol{B}$ 可逆; (2) $\boldsymbol{A B}=\boldsymbol{B A}$; (3) $\boldsymbol{A}-\boldsymbol{E}$ 可逆; (4) $(\boldsymbol{B}-\boldsymbol{E}) \boldsymbol{x}=0$ 有非零解.
正确的共有
$\text{A.}$ 1个 $\text{B.}$ 2个 $\text{C.}$ 3个 $\text{D.}$ 4个

设 $A$ 为三阶方阵, 将 $A$ 的第 2 列加到第 1 列得到矩阵 $B$, 再交换矩阵 $B$ 的第 2 行与第 3 行得到矩阵 $C$, 记
$$
P_1=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], P_2=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad \text { 则 } \boldsymbol{C}=(\quad) \text {. }
$$
$\text{A.}$ $P_2 A P_1$ $\text{B.}$ $P_1 A P_2$ $\text{C.}$ $A P_1 P_2$ $\text{D.}$ $P_2 P_1 A$

设 $A$ 为 $n$ 阶方阵, $|A|=0$, 则下列结论错误的是
$\text{A.}$ $R(A) < n$; $\text{B.}$ $A$ 有一个行向量是其余 $n-1$ 个行向量的线性组合 $\text{C.}$ 有两行元素成比例; $\text{D.}$ $A$ 的 $n$ 个列向量线性相关.

行列式 $\left|\begin{array}{cccc}-1 & 0 & x & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right|$ 中 $x$ 的一次项系数是
$\text{A.}$ 1 $\text{B.}$ -1 $\text{C.}$ 4 $\text{D.}$ -4

多项式 $f(x)=\left|\begin{array}{cccc}x & -1 & 2 x & -x \\ 3 & x & 4 & 1 \\ 2 & 0 & -x & -1 \\ -1 & 3 & 1 & x\end{array}\right|$ 中 $x^3$ 项的系数为
$\text{A.}$ -3 $\text{B.}$ 3 $\text{C.}$ -4 $\text{D.}$ 4

试卷二维码

分享此二维码到群,让更多朋友参与