考研数学
重点科目
其它科目

科数网

后保研高等数学无穷级数试卷

数学

单选题 (共 6 题 ),每题只有一个选项正确
设级数 $\sum_{n=1}^{\infty} a_n x^n$ 在 $x=1$ 处条件收敛, 且 $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_n}=a$ 存在, 则
$\text{A.}$ $a=1$. $\text{B.}$ $a=-1$. $\text{C.}$ $a < 1$ $\text{D.}$ $a>1$.

设 $k>1$, 则级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{k n}+(-1)^n}$ 的敛散性为
$\text{A.}$ 绝对收敛. $\text{B.}$ 条件收敛. $\text{C.}$ 发散. $\text{D.}$ 收敛性与 $k$ 的取值有关.

下面 "结论" 中, 正确的是
$\text{A.}$ 若 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 都发散, 则 $\sum_{n=1}^{\infty}\left(u_n+v_n\right)$ 发散 $\text{B.}$ 若 $\sum_{n=1}^{\infty}\left(u_n+v_n\right)$ 收敛, 则 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 都收敛 $\text{C.}$ 若 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 都收敛, 则 $\sum_{n=1}^{\infty}\left(u_n+v_n\right)$ 都收敛 $\text{D.}$ 若 $\sum_{n=1}^{\infty} u_n$ 收敛, $\sum_{n=1}^{\infty} v_n$ 发散, 则 $\sum_{n=1}^{\infty}\left(u_n+v_n\right)$ 的收敛性不确定

若 $\sum_{n=1}^{\infty} a_n(x-1)^n$ 在 $x=-1$ 处收敛, 那么当 $x =2$ 时该级数 $(\quad)$
$\text{A.}$ 条件收敛 $\text{B.}$ 绝对收敛 $\text{C.}$ 发散 $\text{D.}$ 敛散性不变

若级数 $\sum_{n=1}^N 3 u_n$ 收敛, 则下述结论中不正确的是

$\text{A.}$ $\sum_{n=1}^{\infty} u_n$ 发散 $\text{B.}$ $\sum_{n=1}^{\infty} u_n$ 收敛 $\text{C.}$ $\lim _{n \rightarrow \infty} u_n=0$ $\text{D.}$ $\sum_{n=1}^{\equiv}\left|u_n\right|$ 敛散不确定

下列级数中绝对收敛的是 ( )。
$\text{A.}$ $\sum_1^{\infty} \frac{(-1)^n}{\ln (1+n)}$ $\text{B.}$ $\sum_1^{\infty} \frac{n^3-1}{n^2+2}$ $\text{C.}$ $\sum_1^{\infty}(-1)^n \frac{2 n^2+1}{n^3-2 n+1}$ $\text{D.}$ $\sum_1^{\infty} \frac{(-1)^n n}{\sqrt{3^n}} \sin n$

试卷二维码

分享此二维码到群,让更多朋友参与