单选题 (共 6 题 ),每题只有一个选项正确
设级数 $\sum_{n=1}^{\infty} a_n x^n$ 在 $x=1$ 处条件收敛, 且 $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_n}=a$ 存在, 则
$\text{A.}$ $a=1$.
$\text{B.}$ $a=-1$.
$\text{C.}$ $a < 1$
$\text{D.}$ $a>1$.
设 $k>1$, 则级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{k n}+(-1)^n}$ 的敛散性为
$\text{A.}$ 绝对收敛.
$\text{B.}$ 条件收敛.
$\text{C.}$ 发散.
$\text{D.}$ 收敛性与 $k$ 的取值有关.
下面 "结论" 中, 正确的是
$\text{A.}$ 若 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 都发散, 则 $\sum_{n=1}^{\infty}\left(u_n+v_n\right)$ 发散
$\text{B.}$ 若 $\sum_{n=1}^{\infty}\left(u_n+v_n\right)$ 收敛, 则 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 都收敛
$\text{C.}$ 若 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 都收敛, 则 $\sum_{n=1}^{\infty}\left(u_n+v_n\right)$ 都收敛
$\text{D.}$ 若 $\sum_{n=1}^{\infty} u_n$ 收敛, $\sum_{n=1}^{\infty} v_n$ 发散, 则 $\sum_{n=1}^{\infty}\left(u_n+v_n\right)$ 的收敛性不确定
若 $\sum_{n=1}^{\infty} a_n(x-1)^n$ 在 $x=-1$ 处收敛, 那么当 $x =2$ 时该级数 $(\quad)$
$\text{A.}$ 条件收敛
$\text{B.}$ 绝对收敛
$\text{C.}$ 发散
$\text{D.}$ 敛散性不变
若级数 $\sum_{n=1}^N 3 u_n$ 收敛, 则下述结论中不正确的是
$\text{A.}$ $\sum_{n=1}^{\infty} u_n$ 发散
$\text{B.}$ $\sum_{n=1}^{\infty} u_n$ 收敛
$\text{C.}$ $\lim _{n \rightarrow \infty} u_n=0$
$\text{D.}$ $\sum_{n=1}^{\equiv}\left|u_n\right|$ 敛散不确定
下列级数中绝对收敛的是 ( )。
$\text{A.}$ $\sum_1^{\infty} \frac{(-1)^n}{\ln (1+n)}$
$\text{B.}$ $\sum_1^{\infty} \frac{n^3-1}{n^2+2}$
$\text{C.}$ $\sum_1^{\infty}(-1)^n \frac{2 n^2+1}{n^3-2 n+1}$
$\text{D.}$ $\sum_1^{\infty} \frac{(-1)^n n}{\sqrt{3^n}} \sin n$