单选题 (共 6 题 ),每题只有一个选项正确
下列曲面方程中,表示柱面的是
$\text{A.}$ $x^2-2 y^2=1$
$\text{B.}$ $x^2+y^2=z$
$\text{C.}$ $x^2-2 y^2=z^2$
$\text{D.}$ $x^2-y^2=z$ .
设 $y_1= e ^{-x}, y_2=2 x e ^{-x}, y_3=3 e ^x$ 是三阶常系数线性齐次方程的解,则该方程为
$\text{A.}$ $y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}+y=0$
$\text{B.}$ $y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=0$
$\text{C.}$ $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0$
$\text{D.}$ $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=0$
若函数 $z=f(u)$ 二阶可导, 且 $u =3 e^y+2 x$, 则 $\frac{\partial^2 z}{\partial x \partial y}=$
$\text{A.}$ $6 x f''$
$\text{B.}$ $6 e^y f^{''}$
$\text{C.}$ $3 e^y f^{''}$
$\text{D.}$ $2 f''$
已知曲线 L 的参数方程 $\left\{\begin{array}{l}x=2 \cos ^3 t, \\ y=2 \sin ^3 t\end{array}\left(0 \leq t \leq \frac{\pi}{2}\right)\right.$, 则 L 的长度为
$\text{A.}$ 2 .
$\text{B.}$ 3.
$\text{C.}$ 5.
$\text{D.}$ 6 .
$\text{E.}$ 9
设 $f_1(x, y)=\left\{\begin{array}{ll}\frac{y^2-x y}{\sqrt{x}-\sqrt{y}}, & x \neq y, \\ 0, & x=y,\end{array} f_2(x, y)=\left\{\begin{array}{ll}\frac{x^2 y}{x^4+y^2}, & (x, y) \neq(0,0), \\ 0, & (x, y)=(0,0),\end{array}\right.\right.$ 则
$\text{A.}$ $f_1(x, y), f_2(x, y)$ 在点 $(0,0)$ 处均连续.
$\text{B.}$ $f_1(x, y), f_2(x, y)$ 在点 $(0,0)$ 处均不连续.
$\text{C.}$ $f_1(x, y)$ 在点 $(0,0)$ 处连续,$f_2(x, y)$ 在点 $(0,0)$ 处不连续.
$\text{D.}$ $f_1(x, y)$ 在点 $(0,0)$ 处不连续,$f_2(x, y)$ 在点 $(0,0)$ 处连续.
设有直线 $L:\left\{\begin{array}{l}x+3 y+2 z+1=0 \\ 2 x-y-10 z+3=0\end{array}\right.$ 及平面 $\Pi: 4 x-2 y+z-2=0$ ,则直线 $L$()
$\text{A.}$ 平行于平面
$\text{B.}$ 在平面上
$\text{C.}$ 垂直于平面
$\text{D.}$ 与平面斜交