单选题 (共 2 题 ),每题只有一个选项正确
若幂级数 $\sum_{n=0}^{\infty} a_n x^n, \sum_{n=0}^{\infty} b_n x^n$ 的收敛半径分别是 $R_1 、 R_2$, 则幂级数 $\sum_{n=0}^{\infty}\left(a_n+b_n\right) x^n\left(a_n \neq-b_n\right)$ 的收敛半径是
$\text{A.}$ $R=\max \left(R_1, R_2\right)$
$\text{B.}$ $R=\min \left(R_1, R_2\right)$
$\text{C.}$ $R=R_1 R_2$
$\text{D.}$ $R=R_1+R_2$
下列级数中绝对收敛的是 ( )。
$\text{A.}$ $\sum_1^{\infty} \frac{(-1)^n}{\ln (1+n)}$
$\text{B.}$ $\sum_1^{\infty} \frac{n^3-1}{n^2+2}$
$\text{C.}$ $\sum_1^{\infty}(-1)^n \frac{2 n^2+1}{n^3-2 n+1}$
$\text{D.}$ $\sum_1^{\infty} \frac{(-1)^n n}{\sqrt{3^n}} \sin n$
填空题 (共 4 题 ),请把答案直接填写在答题纸上
曲面 $z=x+2 y+\ln \left(\overline{1}+x^2+y^2\right)$ 在点 $(0,0,0)$ 处的切平面方程为
已知 $f(u, v)$ 存在二阶连续的偏导数,且
$$
\mathrm{d} f(1,1)=3 \mathrm{~d} u+4 \mathrm{~d} v
$$
若 $y=f\left(\cos x, 1+x^2\right)$ ,则 $\left.\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}\right|_{x=0}=$
设空间曲面 $y^2+2 z^2=3 x$, (1) 求曲面在点 $(1,1,-1)$ 处的切平面方程;
(2) 求曲面与 $2 x-3 y+5 z=4$ 的交线在点 $(1,1,1)$ 处的切线方程。
求椭球面 $4 x^2+y^2+z^2=1$ 在点 $\left(\frac{1}{2 \sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ 处的切平面。