考研数学
重点科目
其它科目

科数网

导数及其应用

数学

单选题 (共 6 题 ),每题只有一个选项正确
下列函数中, 在 $x=0$ 处不可导的是
$\text{A.}$ $f(x)=|x| \sin |x|$. $\text{B.}$ $f(x)=|x| \sin \sqrt{|x|}$. $\text{C.}$ $f(x)=\cos |x|$. $\text{D.}$ $f(x)=\cos \sqrt{|x|}$.

设函数 $f(x)$ 在区间 $(-1,1)$ 内有定义, 且 $\lim _{x \rightarrow 0} f(x)=0$, 则
$\text{A.}$ 当 $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{|x|}}=0$ 时, $f(x)$ 在 $x=0$ 处可导. $\text{B.}$ 当 $\lim _{x \rightarrow 0} \frac{f(x)}{x^2}=0$ 时, $f(x)$ 在 $x=0$ 处可导. $\text{C.}$ 当 $f(x)$ 在 $x=0$ 处可导时, $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{|x|}}=0$. $\text{D.}$ 当 $f(x)$ 在 $x=0$ 处可导时, $\lim _{x \rightarrow 0} \frac{f(x)}{x^2}=0$.

已知 $y=\ln (1-x)$, 则 $\frac{d^n y}{d x^n}=(\quad)$.
$\text{A.}$ $(-1)^{n-1} \frac{(n-1)!}{(1-x)^n}$ $\text{B.}$ $-\frac{(n-1)!}{(1-x)^n}$ $\text{C.}$ $(-1)^{n-1} \frac{1}{(1-x)^n}$ $\text{D.}$ $-\frac{1}{(1-x)^n}$

设函数 $f(x)$ 在 $x=0$ 的某邻域内连续, 且 $\lim _{x \rightarrow 0} \frac{f(x)}{x \sin x}=-2$,则在 $x=0$ 处 $f(x) $
$\text{A.}$ 不可导. $\text{B.}$ 可导, 且 $f^{\prime}(0) \neq 0$. $\text{C.}$ 取极大值. $\text{D.}$ 取极小值.

若函数 $f(x)$ 在点 $x=x_0$ 处取得极大值,则下列说法正确的是
$\text{A.}$ $f^{\prime}\left(x_0\right)=0$ $\text{B.}$ $f^{\prime \prime}\left(x_0\right) < 0$ $\text{C.}$ $f^{\prime}\left(x_0\right)=0$ 且 $f^{\prime \prime}\left(x_0\right) < 0$ $\text{D.}$ $f^{\prime}\left(x_0\right)=0$ 或 $f^{\prime}\left(x_0\right)$ 不存在

设 $b, k$ 为常数, 则函数 $f(x)=\left\{\begin{array}{l}k x+b, x < 1 \\ \sqrt{1+x^2}, x \geq 1\end{array}\right.$, 可导的充分必要条件是
$\text{A.}$ $k=0, b=\sqrt{2}$. $\text{B.}$ $k=\frac{\sqrt{2}}{2}, b=\frac{\sqrt{2}}{2}$. $\text{C.}$ $k=\sqrt{2}, b=0$. $\text{D.}$ $k=\frac{2 \sqrt{2}}{3}, b=\frac{\sqrt{2}}{3}$. $\text{E.}$ $k+b=\sqrt{2}$.

试卷二维码

分享此二维码到群,让更多朋友参与