考研数学
重点科目
其它科目

科数网

112

数学

单选题 (共 2 题 ),每题只有一个选项正确
幂级数 $\sum_1^{\infty} \frac{(x-2)^n}{n}$ 的收敛区间是()。
$\text{A.}$ $[1,3]$ $\text{B.}$ $[1,3)$ $\text{C.}$ $(-1,1)$ $\text{D.}$ $[-1,1)$

设 $f(x)=\left\{\begin{array}{ll}x+1, & 0 \leqslant x \leqslant \pi, \\ 0, & -\pi \leqslant x < 0,\end{array} S(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos n x+b_n \sin n \dot{x}\right)\right.$ 是 $f(x)$ 以 $2 \pi$ 为周期的傅里叶级数, 则 $\sum_{n=1}^{\infty} a_n=$
$\text{A.}$ $-\frac{\pi}{4}$. $\text{B.}$ $\frac{\pi}{4}$. $\text{C.}$ $-\frac{\pi}{2}$. $\text{D.}$ $\frac{\pi}{2}$.

填空题 (共 4 题 ),请把答案直接填写在答题纸上
$\sum_{k=1}^{\infty} \frac{6^k}{\left(3^k-2^k\right)\left(3^{k+1}-2^{k+1}\right)}=$

将函数 $f(x)=\frac{x}{2+x-x^2}$ 展成 $x$ 的幂级数。

将函数 $f(x)=x(4-x), x \in(0,4)$ 展开成周期为 4 的Fourier级数, 并求级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 的和。

$\lim _{n \rightarrow \infty} \frac{1}{n^2}\left[\ln \frac{1}{n}+2 \ln \frac{2}{n}+\cdots+(n-1) \ln \frac{n-1}{n}\right]=$

试卷二维码

分享此二维码到群,让更多朋友参与