一、单选题 (共 40 题,每小题 5 分,共 50 分,每题只有一个选项正确)
若正项级数 $\sum_{n=1} a_n$ 收敛, 则下列级数
(1) $\sum_{n=1}^{\infty}(-1)^n a_n$,
(2) $\sum_{n=1}\left(a_n-2 a_{n+1}\right)$,
(3) $\sum_{n=1} \sqrt{a_n}$,
(4) $\sum_{n=1}^{\infty} \sqrt{a_n a_{n-1}}$ 中一定收敛的个数为
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
下列级数中, 收敛的是
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{1}{n+n^2}$
$\text{B.}$ $\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n}\right)$
$\text{C.}$ $\sum_{n=1}^{\infty} \sin \frac{1}{\sqrt{n}}$
$\text{D.}$ $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}$
下列级数中, 绝对收敛的是
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{\sin n^2}{n^2}$
$\text{B.}$ $\sum_{n=1}^{\infty}(-1)^n \frac{1}{\sqrt{n}}$
$\text{C.}$ $\sum_{n=1}^{\infty}(-1)^n \frac{1}{n}$
$\text{D.}$ $\sum_{n=1}^{\infty}(-1)^n \cdot \frac{n}{n+1}$
若幂级数 $\sum_{n=0}^{\infty} a_n x^n, \sum_{n=0}^{\infty} b_n x^n$ 的收敛半径分别是 $R_1 、 R_2$, 则幂级数 $\sum_{n=0}^{\infty}\left(a_n+b_n\right) x^n\left(a_n \neq-b_n\right)$ 的收敛半径是
$\text{A.}$ $R=\max \left(R_1, R_2\right)$
$\text{B.}$ $R=\min \left(R_1, R_2\right)$
$\text{C.}$ $R=R_1 R_2$
$\text{D.}$ $R=R_1+R_2$
当 $|x| < 1$ 时, 函数 $\ln (1+x)$ 在 $x=0$ 的幂级数展开式为
$\text{A.}$ $x+\frac{1}{2} x^2+\frac{1}{3} x^3+\frac{1}{4} x^4+\cdots+\frac{1}{n} x^n+\cdots$
$\text{B.}$ $x-\frac{1}{2} x^2+\frac{1}{3} x^3-\frac{1}{4} x^4+\cdots+(-1)^{n-1} \cdot \frac{1}{n} x^n+\cdots$
$\text{C.}$ $x+\frac{1}{2 !} x^2+\frac{1}{3 !} x^3+\frac{1}{4 !} x^4+\cdots+\frac{1}{n !} x^n+\cdots$
$\text{D.}$ $x-\frac{1}{3 !} x^3+\frac{1}{5 !} x^5-\frac{1}{7 !} x^7+\cdots+(-1)^{n-1} \frac{1}{(2 n-1) !} x^{2 n-1}+\cdots$
将函数 $f(x)=\frac{1}{3+4 x}$ 展开为 $x-1$ 的幂级数, 则该级数的收敛半径为
$\text{A.}$ $\frac{1}{4}$
$\text{B.}$ $\frac{3}{4}$
$\text{C.}$ $\frac{5}{4}$
$\text{D.}$ $\frac{7}{4}$
下列级数中发散的级数是
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)}$
$\text{B.}$ $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$
$\text{C.}$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$
$\text{D.}$ $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^n$
设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内单调有界, $\left\{x_n\right\}$ 为数列, 下列命题正确的是
$\text{A.}$ 若 $\left\{x_n\right\}$ 收敛, 则 $\left\{f\left(x_n\right)\right\}$ 收敛
$\text{B.}$ 若 $\left\{x_n\right\}$ 单调,则 $\left\{f\left(x_n\right)\right\}$ 收敛
$\text{C.}$ 若 $\left\{f\left(x_n\right)\right\}$ 收敛, 则 $\left\{x_n\right\}$ 收敛.
$\text{D.}$ 若 $\left\{f\left(x_n\right)\right\}$ 单调, 则 $\left\{x_n\right\}$ 收敛.
下列计算极限的过程正确的是
$\text{A.}$ $\lim _{x \rightarrow+\infty}\left(\sqrt{x^2+1}-x\right)=\lim _{x \rightarrow+\infty} \sqrt{x^2+1}-\lim _{x \rightarrow+\infty} x=\infty-\infty=0$.
$\text{B.}$ $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=\lim _{x \rightarrow 0} x \cdot \lim _{x \rightarrow 0} \sin \frac{1}{x}=0$.
$\text{C.}$ $\lim _{x \rightarrow+\infty} \frac{\sqrt{x}}{x}=\frac{\lim _{x \rightarrow+\infty} \sqrt{x}}{\lim _{x \rightarrow+\infty} x}=\frac{\infty}{\infty}=1$.
$\text{D.}$ $\lim _{x \rightarrow 0} \frac{x^2-x}{x^2+x}=\lim _{x \rightarrow 0} \frac{x(x-1)}{x(x+1)}=\lim _{x \rightarrow 0} \frac{x-1}{x+1}=\frac{\lim _{x \rightarrow 0}(x-1)}{\lim _{x \rightarrow 0}(x+1)}=\frac{-1}{1}=-1$.
已知级数 $\sum_{n=1}^{\infty}(-1)^{n-1} a_n=2, \sum_{n=1}^{\infty} a_{2 n-1}=5$, 则级数 $\sum_{n=1}^{\infty} a_n$ 等于
$\text{A.}$ 3
$\text{B.}$ 7
$\text{C.}$ 8
$\text{D.}$ 9
设 $u_n \neq 0(n=1,2,3, \cdots)$, 且 $\lim _{n \rightarrow \infty} \frac{n}{u_n}=1$, 则级数 $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{1}{u_n}+\frac{1}{u_{n+1}}\right)$
$\text{A.}$ 发散.
$\text{B.}$ 绝对收敛.
$\text{C.}$ 条件收敛.
$\text{D.}$ 收敛性根据所给条件不能判定.
下列级数收敛的是
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+4)}$
$\text{B.}$ $\sum_{n=1}^{\infty} \frac{1+n}{n^2+1}$
$\text{C.}$ $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$
$\text{D.}$ $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n(n+1)}}$
设 $f(x)=\left\{\begin{array}{ll}x+1, & 0 \leqslant x \leqslant \pi, \\ 0, & -\pi \leqslant x < 0,\end{array} S(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos n x+b_n \sin n x\right)\right.$ 是 $f(x)$ 以 $2 \pi$ 为周 期的傅里叶级数, 则 $\sum_{n=1}^{\infty} a_n=$
$\text{A.}$ $-\frac{\pi}{4}$.
$\text{B.}$ $\frac{\pi}{4}$.
$\text{C.}$ $-\frac{\pi}{2}$.
$\text{D.}$ $\frac{\pi}{2}$.
设有下列命题
(1) 数列 $\left\{x_n\right\}$ 收敛 (即存在极限 $\lim _{n \rightarrow \infty} x_n$ ), 则 $x_n$ 有界.
(2) 数列极限 $\lim _{n \rightarrow \infty} x_n=a \Leftrightarrow \lim _{n \rightarrow \infty} x_{n+l}=a$. 其中 $l$ 为某个确定的正整数.
(3) 数列 $\lim _{n \rightarrow \infty} x_n=a \Leftrightarrow \lim _{n \rightarrow \infty} x_{2 n-1}=\lim _{n \rightarrow \infty} x_{2 n}=a$.
(4) 数列极限 $\lim _{n \rightarrow \infty} x_n$ 存在 $\Leftrightarrow \lim _{n \rightarrow \infty} \frac{x_{n+1}^{n \rightarrow \infty}}{x_n}=1$.
则以上命题中正确的个数是
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
数列 $1, \sqrt{2}, \sqrt[3]{3}, \cdots \cdots, \sqrt[n]{n} $ 的最大项为
$\text{A.}$ $\sqrt{2}$.
$\text{B.}$ $\sqrt[3]{3}$.
$\text{C.}$ $\sqrt[4]{4}$.
$\text{D.}$ $\sqrt[5]{5}$
设 $f(x)=x^2, 0 \leqslant x < 1$, 而 $S(x)=\sum_{n=1} b_n \sin n \pi x,-\infty < x < +\infty$, 其中 $b_n$ $=2 \int_0^1 f(x) \sin n \pi x \mathrm{~d} x(n=1,2, \cdots)$, 则 $S\left(-\frac{1}{2}\right)$ 等于
$\text{A.}$ $-\frac{1}{2}$
$\text{B.}$ $-\frac{1}{4}$
$\text{C.}$ $\frac{1}{4}$
$\text{D.}$ $\frac{1}{2}$
设 $n$ 为正整数, 则 $f(x)=\left(1+x+\frac{x^2}{2}+\cdots+\frac{x^n}{n !}\right) \mathrm{e}^{-x}$ 的极值问题是
$\text{A.}$ 有极小值
$\text{B.}$ 有极大值
$\text{C.}$ 既无极小值也无极大值
$\text{D.}$ $f(x)$ 是否有极值依赖于 $n$ 的具体取值
球状网作为一名秘密任务的长官, 你和首席科学家大宝有如下的谈话。
科学家: “长官, 我们已经掌握了球状闪电的控制规律, 我们发现实验室中的球状闪电半径 的变化率 $v(t)$ 满足如下的方程。
$$
v=a r+r^3-r^5
$$
这里 $r(t)$ 表示球状闪电的半径, 而 $t$ 是时间变量。初始时刻, 没有球状闪电, 即 $r(0)=0$ 。相 应地, 我们也有 $v(0)=0$ 。而 $a \in \mathbb{R}$ 可以被人为控制, 您可以通过拉动一个控制杆来迅速的 改变 $a$ 的值。我们给它的预设值是 $a=-1$ 。”
你: “做的漂亮, 博士! $a$ 是我们的唯一控制方式吗? 这似乎并不能把球状闪电启动起 来。”
科学家: “您说的对, 长官。我们的确有另一个控制方式, 就是踢一下仪器。” 你: “博士, 您没开玩笑吧? 踢一下?”
科学家: “没错, 如果踢一下的话, $r(t)$ 的值就会瞬间提高 $\varepsilon(\varepsilon$ 远小于 1$) 。 ”$
你: “明白了, 这的确有帮助。我们今天的测试目标是启动球状闪电, 让它的半径严格超 过 $\sqrt{2}$, 再让它逐渐完全消失。”
科学家: “是的, 长官。我们为此设计了四个控制方案。
请问长官您觉得这些方案如何? ”
你看了一下这些选项, 发现其中可行的方案有
$\text{A.}$ 设置 $a=2$, 踢一下仪器, 等球状闪电半径严格超过 $\sqrt{2}$, 再设置 $a=-\frac{1}{2}$;
$\text{B.}$ 设置 $a=3$, 踢一下仪器, 等球状闪电半径严格超过 $\sqrt{2}$, 再设置 $a=-\frac{1}{3}$;
$\text{C.}$ 设置 $a=4$, 踢一下仪器, 等球状闪电半径严格超过 $\sqrt{2}$, 再设置 $a=-\frac{1}{4}$;
$\text{D.}$ 设置 $a=5$, 踢一下仪器, 等球状闪电半径严格超过 $\sqrt{2}$, 再设置 $a=-\frac{1}{5}$
设函数 $f(x)=1-\frac{x}{\pi}(0 \leq x \leq \pi)$ 以 $2 \pi$ 为周期的余弦函 数的和函数为 $S(x)$ ,则 $S\left(-\frac{\pi}{2}\right)$ 和 $S(3 \pi)$ 的值分别为
$\text{A.}$ $\frac{1}{2},-2$
$\text{B.}$ $\frac{3}{2},-2$
$\text{C.}$ $\frac{1}{2}, 0$
$\text{D.}$ $\frac{3}{2}, 0$
设 $p \geqslant 0$, 若级数 $\sum_{n=1}^{\infty} \int_0^{\frac{1}{n}} \frac{x^p}{1+x^q} \mathrm{~d} x$ 发散, 则
$\text{A.}$ $p>0, q \geqslant 0$.
$\text{B.}$ $p>0, q < 0$.
$\text{C.}$ $p=0, q \geqslant 0$.
$\text{D.}$ $p=0, q < 0$.
设 $a \neq b$, 函数 $f(x)=\left\{\begin{array}{ll}a, & 0 < x < \pi, \\ b, & -\pi < x < 0,\end{array}\right.$ 且其傅里叶级数展开式为 $\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos n x+\right.$ $\left.b_n \sin n x\right)$, 则
$\text{A.}$ $\sum_{n=1}^{\infty} a_n$ 发散.
$\text{B.}$ $\sum_{n=1}^{\infty} b_n$ 收敛.
$\text{C.}$ $\sum_{n=1}^{\infty} a_n^2$ 发散.
$\text{D.}$ $\sum_{n=1}^{\infty} b_n^2$ 收敛.
已知级数 $\sum_{n=1}^{\infty}(-1)^n\left(\mathrm{e}^{\frac{1}{\sqrt{n}}}-1\right) \ln \left(1+\frac{1}{n^\alpha}\right)$ 绝对收敛, 级数 $\sum_{n=1}^{\infty}(-1)^n \frac{1}{n^{1-\sigma}}$ 条件收敛, 则
$\text{A.}$ $\alpha>\frac{5}{2}$.
$\text{B.}$ $2 < \alpha < 3$.
$\text{C.}$ $\frac{1}{2} < \alpha < 1$.
$\text{D.}$ $\alpha < 3$.
设级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则下列结论正确的是
$\text{A.}$ $\sum_{n=1}^{\infty}(-1)^n a_n$ 收敛
$\text{B.}$ $\sum_{n=1}^{\infty} a_n^2$ 收敛
$\text{C.}$ $\sum_{n=1}^{\infty} a_{2 n-1}$ 收敛
$\text{D.}$ $\sum_{n=1}^{\infty}\left(a_{n+1}^2-a_n^2\right)$ 收敛
下列命题正确的是
$\text{A.}$ 若级数 $\sum_{n=1}^{\infty} a_n$ 与级数 $\sum_{n=1}^{\infty} b_n$ 都收敛, 则 $\sum_{n=1}^{\infty} a_n b_n$ 一定收敛
$\text{B.}$ 若 $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_n} < 1$, 则级数 $\sum_{n=1}^{\infty} a_n$ 一定收敛
$\text{C.}$ 若级数 $\sum_{n=1}^{\infty} a_n\left(a_n \neq 0\right)$ 发散, 则 $\sum_{n=1}^{\infty} \frac{1}{a_n}$ 收敛
$\text{D.}$ 若正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 则 $\sum_{n=1}^{\infty} a_n^2$ 收敛
级数 $\sum_{n=2}^{\infty} \frac{1}{n^\alpha \ln ^\beta n}$ 收敛的充要条件是
$\text{A.}$ $\alpha>1$.
$\text{B.}$ $\alpha>1, \beta>1$.
$\text{C.}$ $\alpha \geqslant 1, \beta>1$.
$\text{D.}$ $\alpha>1$ 或 $\alpha=1, \beta>1$.
设 $f(x)$ 是周期为 $2 \pi$ 的周期函数, 它在区间 $(-\pi, \pi]$ 上的表达式是 $f(x)=x+x^2$. 若其傅里叶 (Fourier) 级数为 $S(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos n x+b_n \sin n x\right)$, 则
$\text{A.}$ $b_3=\frac{2}{3}, S(3 \pi)=\pi^2$.
$\text{B.}$ $b_3=\frac{4}{3}, S(3 \pi)=\pi$.
$\text{C.}$ $b_3=\frac{2}{3}, S(3 \pi)=\pi$.
$\text{D.}$ $b_3=-\frac{2}{3}, S(3 \pi)=\pi^2$.
下列广义积分中, 发散的是
$\text{A.}$ $\int_1^{+\infty} \frac{\mathrm{d} x}{\sqrt{x}(1+x)}$
$\text{B.}$ $\int_{-1}^1 \frac{1}{\sin x} \mathrm{~d} x$
$\text{C.}$ $\int_2^{+\infty} \frac{1}{x \ln ^2 x} \mathrm{~d} x$
$\text{D.}$ $\int_{-\infty}^{+\infty} x e^{-x^2} \mathrm{~d} x$
设 $\sum_{n=1}^{\infty} a_n$ 收敛,下面 4 个级数,
(1) $\sum_{n=1}^{\infty} a_n^2$;
(2) $\sum_{n=1}^{\infty}\left(a_n-a_{n+1}\right)$;
(3) $\sum_{n=1}^{\infty}\left(a_{2 n-1}+a_{2 n}\right)$;
(4) $\sum_{n=1}^{\infty}\left(a_{2 n-1}-a_{2 n}\right)$.
必收敛的个数为 ( )
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
设函数 $f(x)$ 连续且满足 $f(x+\pi)+f(x)=0$, 则 $f(x)$ 以 $2 \pi$ 为周期的傅里叶系数 $(n=1$, $2, \cdots)$
$\text{A.}$ $a_{2 n}=0, b_{2 n}=0$.
$\text{B.}$ $a_{2 n}=0, b_{2 n-1}=0$.
$\text{C.}$ $a_{2 n-1}=0, b_{2 n-1}=0$.
$\text{D.}$ $a_{2 \pi-1}=0, b_{2 n}=0$.
已知 $a_n=\frac{(-1)^{[\cos 2 n]}}{n}$, 其中 $n$ 为正整数, $[\cos 2 n]$ 表示不超过 $\cos 2 n$ 的最大整数, 则数列 $\left\{a_n\right\}$
$\text{A.}$ 有最大值 $\frac{1}{2}$, 有最小值 -1 .
$\text{B.}$ 有最大值 1 , 有最小值 $-\frac{1}{3}$.
$\text{C.}$ 有最大值 1 , 有最小值 $-\frac{1}{2}$.
$\text{D.}$ 有最大值 $\frac{1}{3}$, 有最小值 -1 .
若幂级数 $\sum_{n=1}^{\infty} a_n(x+2)^n$ 在 $x=-5$ 处收敛,则其在 $x=0$ 处是
$\text{A.}$ 发散
$\text{B.}$ 条件收敛
$\text{C.}$ 绝对收敛
$\text{D.}$ 收敛性不能确定
下列数项级数哪个发散?
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$
$\text{B.}$ $\sum_{n=1}^{\infty} \sin \frac{\pi}{2^n}$
$\text{C.}$ $\sum_{n=1}^{\infty} \ln \frac{n^2+1}{n^2}$
$\text{D.}$ $\sum_{n=1}^{\infty} \frac{3^n n !}{n^n}$
设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则下列级数绝对收敛的是
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{u_n}{n}$
$\text{B.}$ $\sum_{n=1}^{\infty} \frac{u_n^2}{n}$
$\text{C.}$ $\sum_{n=1}^{\infty}\left(u_{n+1}-u_n\right)$
$\text{D.}$ $\sum_{n=1}^{\infty}\left(u_n\right)^n$
设函数 $f(x)=\left\{\begin{array}{cc}x, & 0 \leqslant x \leqslant 1, \\ -x, & 1 < x \leqslant 2,\end{array}\right.$ 的正弦级数与余弦级数的和函数分别为 $S_1(x)$ 与 $S_2(x)$ $(-\infty < x < +\infty)$, 则 $S_1(6)+S_2(-3)=$
$\text{A.}$ -2
$\text{B.}$ 0
$\text{C.}$ 1
$\text{D.}$ 2
设 $p$ 为常数, 若级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p} \arctan \frac{1}{\sqrt{n}}$ 条件收剑, 则 $p$ 的取值范围是
$\text{A.}$ $\left(0, \frac{1}{2}\right]$.
$\text{B.}$ $\left(-\frac{1}{2}, \frac{1}{2}\right]$.
$\text{C.}$ $(0,1)$.
$\text{D.}$ $\left(-\frac{1}{2}, 1\right)$.
设幂级数 $\sum_{n=1}^{\infty} a_n(x-1)^n$ 在 $x=3$ 处条件收敛,则级数 $\sum_{n=1}^{\infty} \frac{a_n}{2^n}(x+1)^n$ 在 $x=-3$ 处
$\text{A.}$ 绝对收敛
$\text{B.}$ 条件收敛
$\text{C.}$ 发散
$\text{D.}$ 敛散性不确定
下列结论正确的是
$\text{A.}$ 若 $\sum a_n x^n$ 的收敛半径为 $R$ ,则 $\sum\left(a_n x^n\right)^{\prime}$ (导数)的收敛半径也是 $R$
$\text{B.}$ 若 $f(x)$ 在 $x=x_0$ 有任意阶导数,则有$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_0\right)}{n!}\left(x-x_0\right)^n $
$\text{C.}$ 若 $\sum a_n x^n$ 的收敛半径为 $R$, 则 $\lim _{n \rightarrow \infty}\left|\frac{a_n}{a_{n+1}}\right|=R$
$\text{D.}$ 设 $\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos n x+b_n \sin n x\right)$ 是周期为 $2 \pi$ 的函数 $f(x)$的傅里叶级数,则在 $f(x)$ 的定义域内,有 $ f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos n x+b_n \sin n x\right) $
设函数 $f(x)$ 是 $(-\infty, \infty)$ 上以 $2 \pi$ 为周期的周期函数,且在区间 $(0,2 \pi]$ 上有 $f(x)=x^2(0 < x \leq 2 \pi)$ ,则 $f(x)$ 的傅里叶系数中 $a_0$ 的值为
$\text{A.}$ $\frac{2 \pi^2}{3}$
$\text{B.}$ $\frac{4 \pi^2}{3}$
$\text{C.}$ $\frac{8 \pi^2}{3}$
$\text{D.}$ $\frac{10 \pi^2}{3}$
设函数 $f(x)=\left\{\begin{array}{ll}x, & 0 \leq x < \frac{1}{2}, \\ 1, & \frac{1}{2} \leq x \leq 1\end{array}\right.$ 的正弦级数 $\sum_{n=1}^{+\infty} b_n \sin n \pi x$的和函数为 $S(x)$ ,其中
$$
b_n=2 \int_0^1 f(x) \sin n \pi x \mathrm{~d} x(n=1,2, \cdots),
$$
则 $S\left(\frac{7}{2}\right)$ 和 $S(7)$ 的值分别为
$\text{A.}$ $\frac{3}{4}, 0$
$\text{B.}$ $-\frac{3}{4}, 0$
$\text{C.}$ $\frac{3}{4}, 1$
$\text{D.}$ $-\frac{3}{4}, 1$
已知函数 $f(x)=x^2, 0 \leq x \leq 1$ ,记 $S(x)=\sum_{n=1}^{\infty} b_n \sin n \pi x$ ,其中 $b_n=2 \int_0^1 f(x) \sin n \pi x \mathrm{~d} x(n=1,2, \cdots)$ ,则当 $x \in(1,2)$ 时, $S(x)=(\quad)$
$\text{A.}$ $x^2$
$\text{B.}$ $-x^2$
$\text{C.}$ $(x-2)^2$
$\text{D.}$ $-(x-2)^2$