一、单选题 (共 11 题,每小题 5 分,共 50 分,每题只有一个选项正确)
已知 $Q=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & t \\ 3 & 6 & 9\end{array}\right), P$ 为三阶非零矩阵, 且满足 $P Q=0$, 则
$\text{A.}$ $t=6$ 时, $P$ 的秩必为 1
$\text{B.}$ $t=6$ 时, $P$ 的秩必为 2
$\text{C.}$ $t \neq 6$ 时, $P$ 的秩必为 1
$\text{D.}$ $t \neq 6$ 时, $P$ 的秩必为 2
设 $f(x, y)$ 在点 $P_0\left(x_0, y_0\right)$ 处有二阶连续偏导数, 且 $f(x, y)$ 在 $P_0$ 处取得极大 值, 则
$\text{A.}$ $f_{x x}^{\prime \prime}\left(P_0\right) \geqslant 0, f_{y y}^{\prime \prime}\left(P_0\right) \geqslant 0$.
$\text{B.}$ $f_{x x}^{\prime \prime}\left(P_0\right) < 0, f_{y y}^{\prime \prime}\left(P_0\right) < 0$.
$\text{C.}$ $f_{x x}^{\prime \prime}\left(P_0\right) \leqslant 0, f_{y y}^{\prime \prime}\left(P_0\right) \leqslant 0$.
$\text{D.}$ $f_{x x}^{\prime \prime}\left(P_0\right) \leqslant 0, f_{y y}^{\prime \prime}\left(P_0\right) \geqslant 0$.
设 $A, B$ 都是 $n$ 阶非零矩阵,且 $A B=0$ ,则 $A$ 和 $B$ 的秩
$\text{A.}$ 必有一个等于零
$\text{B.}$ 都小于 $n$
$\text{C.}$ 一个小于 $\boldsymbol{n}$ ,一个等于 $\boldsymbol{n}$
$\text{D.}$ 都等于 $n$
设 $n(n \geq 3)$ 阶矩阵 $A=\left(\begin{array}{ccccc}1 & a & a & \cdots & a \\ a & 1 & a & \cdots & a \\ a & a & 1 & \cdots & a \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a & a & a & \cdots & 1\end{array}\right)$, 若矩阵 $A$ 的秩为 $n-1$ ,则 $a$ 必为
$\text{A.}$ 1
$\text{B.}$ $\frac{1}{1-n}$
$\text{C.}$ -1
$\text{D.}$ $\frac{1}{n-1}$
设 $A$ 是 $m \times n$ 矩阵, $B$ 是 $n \times m$ 矩阵,则
$\text{A.}$ 当 $m>n$ 时,必有行列式 $|A B| \neq 0$
$\text{B.}$ 当 $m>n$ 时,必有行列式 $|A B|=0$
$\text{C.}$ 当 $n>m$ 时,必有行列式 $|A B| \neq 0$
$\text{D.}$ 当 $n>m$ 时,必有行列式 $|A B|=0$
设三阶矩阵 $A=\left(\begin{array}{lll}a & b & b \\ b & a & b \\ b & b & a\end{array}\right)$ ,若 $A$ 的伴随矩阵的秩等于1,则必有
$\text{A.}$ $a=b$ 或 $a+2 b=0$
$\text{B.}$ $a=b$ 或 $a+2 b \neq 0$
$\text{C.}$ $a \neq b$ 且 $a+2 b=0$
$\text{D.}$ $a \neq b$ 且 $a+2 b \neq 0$
设 $A$ 为三阶矩阵, 将 $A$ 的第 2 行加到第 1 行得 $B$ ,再将 $B$的第 1 列的 -1 倍加到第 2 列得 $C$ ,记 $P=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ ,则
$\text{A.}$ $C=P^{-1} A P$
$\text{B.}$ $C=P A P^{-1}$
$\text{C.}$ ${C}={P}^T {A P}$
$\text{D.}$ $C=P A P^T$
设 $A$ 为三阶矩阵,将 $A$ 的第 2 行加到第 1 行得 $B$ ,再将 $B$的第 1 列的 -1 倍加到第 2 列得 $C$ ,记 $P=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ ,则
$\text{A.}$ $C=P^{-1} A P$
$\text{B.}$ $C=P A P^{-1}$
$\text{C.}$ $C=P^T A P$
$\text{D.}$ $C=P A P^T$
设 $A$ 为 $m \times n$ 型矩阵, $B$ 为 $n \times m$ 型矩阵, $E$ 为 $m$ 阶单位矩阵. 若 $A B=E$ ,则
$\text{A.}$ 秩 $r(A)=m$ ,秩 $r(B)=m$
$\text{B.}$ 秩 $r(A)=m$ ,秩 $r(B)=n$
$\text{C.}$ 秩 $r(A)=n$ ,秩 $r(B)=m$
$\text{D.}$ 秩 $r(A)=n$ ,秩 $r(B)=n$
设 $\boldsymbol{A}$ 为 3 阶矩阵,将 $\boldsymbol{A}$ 的第 2 列加到第 1 列得矩阵 $\boldsymbol{B}$ ,再交换 $B$ 的第 2 行与第 3 行得单位矩阵,记 $P_1=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ , $P_2=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ ,则 $A=$
$\text{A.}$ $P_1 P_2$
$\text{B.}$ $P_1^{-1} P_2$
$\text{C.}$ $P_2 P_1$
$\text{D.}$ $P_2 P_1^{-1}$
交换 $B$ 的第 2 行与第 3 行得单位矩阵,记 $P_1=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ ,
$P_2=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) ,$ 则 $A=(\quad)$
$\text{A.}$ $P_1 P_2$
$\text{B.}$ $P_1^{-1} P_2$
$\text{C.}$ $P_2 P_1$
$\text{D.}$ $P_2 P_1^{-1}$
二、判断题 (共 1 题,每小题 5 分,共 20 分)
若 $A$ 和 $B$ 都是 $n$ 阶非零方阵,且 $A B=0$ ,则 $A$ 的秩必小于 $n$.
$\text{A.}$ 正确
$\text{B.}$ 错误
三、填空题 (共 10 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $\boldsymbol{A}=\left(\begin{array}{cccc}a_{1} b_{1} & a_{1} b_{2} & \cdots & a_{1} b_{n} \\ a_{2} b_{1} & a_{2} b_{2} & \cdots & a_{2} b_{n} \\ \vdots & \vdots & & \vdots \\ a_{n} b_{1} & a_{n} b_{2} & \cdots & a_{n} b_{n}\end{array}\right)$, 其中 $a_{i} \neq 0, b_{i} \neq 0(i=1,2, \cdots, n)$, 则矩阵 $\boldsymbol{A}$ 的秩 $r(\boldsymbol{A})=$
设 $\boldsymbol{A}$ 是 $4 \times 3$ 矩阵, 且 $\boldsymbol{A}$ 的秩 $r(\boldsymbol{A})=2$, 而 $\boldsymbol{B}=\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3\end{array}\right)$, 则 $r(\boldsymbol{A} \boldsymbol{B})= $.
设向量场 $\boldsymbol{A}(x, y, z)=x y \boldsymbol{i}-y z \boldsymbol{j}+z x \boldsymbol{k}$, 则 $\operatorname{div}[\operatorname{rot} \boldsymbol{A}(x, y, z)]=$
设 4 阶方阵 $A$ 的秩为 2 ,则其伴随矩阵 $A^*$ 的秩为
设 $A=\left(\begin{array}{cccc}k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k\end{array}\right)$ ,且秩 $(A)=3$ ,则 $k=$
设矩阵 $A=\left(\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right) , E$ 为二阶单位矩阵,矩阵 $B$ 满足 $B A=B+2 E$ ,则 $|B|=$
设矩阵 $A=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$ ,则 $A^3$ 的秩为
设矩阵 $A=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$ ,则 $A^3$ 的秩为
设 3 阶矩阵 $A$ 的特征值为 $1,2,2, E$ 为 3 阶单位矩阵,则 $\left|4 A^{-1}-E\right|=$
设三阶矩阵 $\boldsymbol{A}$ 的特征值互不相同,且行列式 $|\boldsymbol{A}|=0$ ,则 $A$ 的秩为
四、解答题 ( 共 8 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设函数 $Q(x, y)$ 在 $x O y$ 平面上具有一阶连续偏导数,曲线积分 $\int_{L} 2 x y \mathrm{~d} x+Q(x, y) \mathrm{d} y$ 与路径无关, 并且 对任意 $t$ 恒有
$$
\int_{(0,0)}^{(t, 1)} 2 x y \mathrm{~d} x+Q(x, y) \mathrm{d} y=\int_{(0,0)}^{(1, t)} 2 x y \mathrm{~d} x+Q(x, y) \mathrm{d} y,
$$
求 $Q(x, y)$.
计算曲线积分 $I=\int_L \frac{4 x-y}{4 x^2+y^2} d x+\frac{x+y}{4 x^2+y^2} d y$, 其中 $L$ 是 $x^2+y^2=2$, 方向为逆时针方向
设函数 $z=\left(x^2+y^2\right) f\left(x^2+y^2\right)$ 满足 $\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=0$, 且 $f(1)=0, f^{\prime}(1)=1$, 若 $f(x)$ 在 $[1,+\infty)$ 上有连续二阶导数, 求 $f(x)$ 在 $[1,+\infty)$ 的最大值.
设函数 $f(x)$ 二阶可导, $f(0)=1$, 且有
$$
f^{\prime}(x)+3 \int_0^x f^{\prime}(t) \mathrm{d} t+2 x \int_0^1 f(x t) \mathrm{d} t+\mathrm{e}^{-x}=0,
$$
求 $f(x)$.
设 $f(x)$ 二阶可导, 且 $f(0)=0, f^{\prime}(0)=0$, 若 $g(x, y)=\int_0^y f(x t) \mathrm{d} t$ 满足方程
$$
\frac{\partial^2 g}{\partial x \partial y}-x y g(x, y)=x y^2 \sin x y,
$$
求 $g(x, y)$.
设可微函数 $f(x, y)$ 在点 $(x, y)$ 处沿 $\boldsymbol{l}_1=(-1,0)$ 与 $\boldsymbol{l}_2=(0,-1)$ 的方向导数分别 为 $2 a x-3 x^2$ 与 $2 a y-3 y^2(a>0)$, 且 $f(0,0)=0$, 若 $f(x, y)$ 有极小值 $-8$, 求 $a$ 的值及 $f(x, y)$ 的表达式.
设 $A$ 为 $m$ 阶实对称矩阵且正定, $B$ 为 $m \times n$ 实矩阵, $B^T$ 为 $B$ 的转置矩阵,试证: $B^T A B$ 为正定矩阵的充分必要条件是 $B$ 的秩 $r(B)=n$.
设 $\alpha, \beta$ 为 3 维列向量,矩阵 $A=\alpha \alpha^T+\beta \beta^T$ ,其中 $\alpha^T, \beta^T$ 分别是 $\alpha, \beta$ 的转置. 证明:
(1) 秩 $r(A) \leq 2$;
(2) 若 $\alpha, \beta$ 线性相关,则秩 $r(A) < 2$.