一、单选题 (共 5 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设函数 $f(x, y)$ 在点 $(0,0)$ 处可微, $f(0,0)=0, n=\left.\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},-1\right)\right|_{(0,0)}$ 且非零向量 $d$ 与 $n$ 垂直,则()
$\text{A.}$ $\lim _{(x, y) \rightarrow(0,0)} \frac{|\boldsymbol{n} \cdot(x, y, f(x, y))|}{\sqrt{x^2+y^2}}=0$ 存在
$\text{B.}$ $\lim _{(x, y) \rightarrow(0,0)} \frac{|\boldsymbol{n} \times(x, y, f(x, y))|}{\sqrt{x^2+y^2}}=0$ 存在
$\text{C.}$ $\lim _{(x, y) \rightarrow(0,0)} \frac{|\boldsymbol{d} \cdot(x, y, f(x, y))|}{\sqrt{x^2+y^2}}=0$ 存在
$\text{D.}$ $\lim _{(x, y) \rightarrow(0,0)} \frac{|\boldsymbol{d} \times(x, y, f(x, y))|}{\sqrt{x^2+y^2}}=0$存在
设 $R$ 为幂级数 $\sum_{n=1}^{\infty} a_n r^n$ 的收敛半径, $r$ 是实数, 则 ( )
$\text{A.}$ $\sum_{n=1}^{\infty} a_n r^n$ 发散时, $|r| \geq R$
$\text{B.}$ $\sum_{n=1}^{\infty} a_n r^n$ 发散时, $|r| \leq R$
$\text{C.}$ $|r| \geq R$ 时, $\sum_{n=1}^{\infty} a_n r^n$ 发散
$\text{D.}$ $|r| \leq R$ 时, $\sum_{n=1}^{\infty} a_n r^n$ 发散
已知数列 $\left\{x_n\right\}$, 其中 $-\frac{\pi}{2} \leq x_n \leq \frac{\pi}{2}$, 则
$\text{A.}$ 当 $\lim _{n \rightarrow \infty} \cos \left(\sin x_n\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在
$\text{B.}$ 当 $\lim _{n \rightarrow \infty} \sin \left(\cos x_n\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在
$\text{C.}$ 当 $\lim _{n \rightarrow \infty} \cos \left(\sin x_n\right)$ 存在时, $\lim _{n \rightarrow \infty} \sin x_n$ 存在, $\lim _{n \rightarrow \infty} x_n$ 不一定存在
$\text{D.}$ $\lim _{n \rightarrow \infty} \sin \left(\cos x_n\right)$ 存在时, $\lim _{n \rightarrow \infty} \cos x_n$ 存在, $\lim _{n \rightarrow \infty} x_n$ 不一定存在
设 $\boldsymbol{A}, \boldsymbol{B}$ 均为 3 阶矩阵, 则必有
$\text{A.}$ $r(\boldsymbol{A}, \boldsymbol{A B})=r(\boldsymbol{A})$.
$\text{B.}$ $r(\boldsymbol{A}, \boldsymbol{B A})=r(\boldsymbol{A})$.
$\text{C.}$ $r\left(\begin{array}{c}\boldsymbol{A} \\ \boldsymbol{A B}\end{array}\right)=r(\boldsymbol{A})$.
$\text{D.}$ $r(\boldsymbol{A B})=r(\boldsymbol{B A})$.
下列集合构成向量空间的是
$\text{A.}$ $V_1=\{x \mid A x=b\}$
$\text{B.}$ $V_2=\left\{x=\left(1, x_2, x_3\right)^T \mid x_2, x_3 \in R\right\}$
$\text{C.}$ $V_3=\{x \mid A x=O\}$
$\text{D.}$ $V_4=\left\{x=\left(x_1, x_2, x_3\right)^T \mid x_1+x_2+x_3=1\right\}$
二、填空题 (共 6 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
在五阶行列式中项 $a_{35} a_{53} a_{12} a_{41} a_{24}$ 的符号为
设行列式 $\left|\begin{array}{lll}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{array}\right|=2$, 则 $\left|\begin{array}{lll}2 a_1+b_1 & 3 b_1 & c_1 \\ 2 a_2+b_2 & 3 b_2 & c_2 \\ 2 a_3+b_3 & 3 b_3 & c_3\end{array}\right|=$
$A=\left(\begin{array}{ccc}1 & -1 & 3 \\ 0 & 0 & 1\end{array}\right), B=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$, 则 $A^T B=$
设矩阵 $A$ 为 3 阶矩阵, 若已知 $|\boldsymbol{A}|=-3$, 则 $\left|\boldsymbol{A}^*\right|=$
已知向量 $\alpha=(1,2,-2)^T, \beta=(2, t, 3)^T$, 且 $\alpha$ 与 $\beta$ 正交, 则 $t=$
求矩阵 $\left(\begin{array}{ccc}1 & -2 & 1 \\ -2 & 5 & -4 \\ 1 & -4 & 6\end{array}\right)$ 的逆矩阵;
三、解答题 ( 共 29 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $0 < k < 1$, 且 $\lim _{n \rightarrow \infty} a_n=a$, 证明:
$$
\lim _{n \rightarrow \infty}\left(a_n+k a_{n-1}+\cdots+k^{n-1} a_1+k^n a_0\right)=\frac{a}{1-k} .
$$
设 $f(x)$ 在 $[0,1]$ 上二阶连续可微, 且存在 $M>0$, 使得 $\left|f^{\prime \prime}(x)\right| \leq M, x \in[0,1]$. 又设 $f(x)$ 在 $(0,1)$ 内可取到最大值. 证明: $\left|f^{\prime}(0)\right|+\left|f^{\prime}(1)\right| \leq M$.
设级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 证明函数项级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$在 $x \in[0,+\infty)$ 上一致收敛
设 $f(x)$ 是 $[0,+\infty)$ 上的可导函数,且导函数 $f^{\prime}$ 处处连续,假设 $\int_0^{+\infty} f^2(x) d x$ 与 $\int_0^{+\infty}\left[f^{\prime}(x)\right]^2 d x$ 均收敛,
证明 $\lim _{x \rightarrow+\infty} f(x)=0$.
设 $f(x)$ 是 $[a, b]$ 上的连续函数,且 $f(x)>0 , x \in[a, b]$.证明 $\lim _{p \rightarrow 0^{+}}\left(\frac{1}{b-a} \int_a^b f^p(x) d x\right)^{\frac{1}{p}}=\exp \left\{\frac{1}{b-a} \int_a^b \ln f(x) d x\right\}$其中 $\exp (t)=e^t$ 表示指数函数
设 $a_1, a_2, \cdots, a_n$ 为n个非零实数,证明n维欧氏空间 $R^n$ 上定义的 $n$ 元函数 $f\left(x_1, x_2, \cdots, x_n\right)=x_1^2+x_2^2+\cdots+x_n^2$在条件 $\frac{x_1}{a_1}+\frac{x_2}{a_2}+\cdots+\frac{x_n}{a_n}=1$ 的最小值存在,并求解。
判断广义二重积分 $\iint \frac{x^2-y^2}{\left(x^2+y^2\right)^2} d x d y$ 的敛散性,并结出理由。 $\left\{\left(x y, \in R^2 \mid x \geqslant 1, y \geqslant 1\right\}\right.$
设D是由简单光滑闭曲线L围成的区域, $f(x, y)$ 在 $\bar{D}$ 上有连续偏导,记 $d=\max _{(x y) \in D} \sqrt{x^2+y^2}$
(1) 证明 $\iint_D f(x, y) d x d y=\int_L^{(x y) \in D} x \cdot f d y-\iint_D x \cdot \frac{\partial f}{\partial x} d x d y$
(2)若对 $\forall(x, y) \in L$ ,有 $f(x, y)=0$. 证明
$$
\iint_D f^2(x y) d x d y \leqslant d^2 \iint_D\left[\left(\frac{\partial f}{\partial x}\right)^2+\left(\frac{\partial f}{\partial y}\right)^2\right] d x d y
$$
证明实轴 $\mathbb{R}$ 不能分解为可数个长度大于零的不交闭区间的并。
假设定义在区间 $(a, b)$ 上的函数 $f$ 的左右导数处处存在,证明 $f$ 至多在可数个点处不可导。
考虑无穷级数
$$
\sum_{n=1}^{\infty} \frac{\sin n x}{\sqrt{n}}, \quad x \in[-\pi, \pi]
$$
1)证明级数在 $x=0, \pm \pi$ 处绝对收敛,在 $(-\pi, 0) \cup(0, \pi)$ 上条件收敛;
2) 记极限函数为 $S(x)$ ,证明 $S(x)$ 是 $[-\pi, 0) \cup(0, \pi]$ 上的连续函数;
3) 证明函数 $S(x)$ 在 0 处不连续。
求积分 $\int_0^\pi(\sin x)^{\frac{4}{3}}(\cos x)^{\frac{2}{3}} \mathrm{~d} x$ 的值.
证明: (1) 曲线积分
$
\int_C \mathrm{e}^{-2 x y} \cos \left(x^2-y^2\right) \mathrm{d} x-\mathrm{e}^{-2 x y} \sin \left(x^2-y^2\right) \mathrm{d} y
$
与路径无关;
(2) 证明: $\lim _{R \rightarrow+\infty}\left(\int_0^R \cos x^2 \mathrm{~d} x-\int_0^R \mathrm{e}^{-2 x^2} \mathrm{~d} x\right)=0$;
(3) 证明: $\lim _{R \rightarrow+\infty}\left(\int_0^R \sin x^2 \mathrm{~d} x-\int_0^R \mathrm{e}^{-2 x^2} \mathrm{~d} x\right)=0$.
设 $f(x) \in \mathbb{R}[x]$, 且 $\operatorname{deg} f(x)>1$, 证明: 存在非零多项式 $g(x) \in$ $\mathbb{R}[x]$, 使得 $f(x) \mid g\left(x^8\right)$.
设向量组 $a_1, a_2, a_3$ 线性无关, $b_1=3 a_1+a_2-a_3, b_2=4 a_1+a_2-a_3, b_3=a_2+a_3$, 讨论向量组 $b_1, b_2, b_3$ 的线性相关性。
设函数 $f(x)=\pi-x$ ,其中 $x \in[0, \pi]$.
(1)将 $f(x)$ 展开为余弦级数,并在 $[-\pi, \pi]$ 上写出和函数表达式.
(2) 判断该级数在 $[0, \pi]$ 内是否一致收敛,并说明原因.
设 $f_n(x)=n^\alpha \cdot x e^{-n x},(n=1,2, \cdots)$ ,问:
(1) 当 $\alpha$ 为何值时, $\left\{f_n(x)\right\}$ 在 $[0,1]$ 上收敛?
(2) 当 $\alpha$ 为何值时, $\left\{f_n(x)\right\}$ 在 $[0,1]$ 上一致收敛?
(3) 当 $\alpha$ 为何值时,以下等式成立?
$\lim _{n \rightarrow+\infty} \int_0^1 f_n(x) \mathrm{d} x=\int_0^1 \lim _{n \rightarrow+\infty} f_n(x) \mathrm{d} x $
解答如下问题:
(1) 叙述 $\mathbb{R}^n$ 上的有限覆盖定理.
(2) 设对任意的 $x_0 \in[a, b]$ ,有 $\lim _{x \rightarrow x_0} f(x)=0$ ,证明:
$f(x) \in \mathbb{R}[a, b] \text { 且 } \int_a^b f(x) \mathrm{d} x=0 $
证明: 函数项级数 $\sum_{n=1}^{\infty} \frac{x^2}{\left(1+x^2\right)^n}$ 在 $(-\infty,+\infty)$ 上点点收敛,但并非一致收敛.
(1) 证明: 狄利克雷积分 $\int_0^{+\infty} \frac{\sin (\alpha x)}{x} \mathrm{~d} x$ 在不含数值 $\alpha=0$ 的每一个闭区间 $[a, b]$ 上一致收敛,在每一个包含数值 $\alpha=0$ 的闭区间 $[a, b]$ 上非一致收敛.
(2) 已知 $\int_0^{+\infty} \frac{\sin x}{x} \mathrm{~d} x=\frac{\pi}{2}$ ,求 $F(x)=\int_0^{+\infty} \frac{\sin ^2(x t)}{t^2} \mathrm{~d} t$ ,其中 $\boldsymbol{x}>\mathbf{0}$.
$f(x)$ 为 $[0,2]$ 上的 $C^2$ 函数, 且 $f(0)=f(2)=0$, 证明:
$$
\int_0^2 f(x) \mathrm{d} x \leq \frac{2}{3} \max _{x \in[0,2]}\left|f^{\prime \prime}(x)\right|
$$
设 $f$ 为定义在 $\mathbb{R}^n$ 上的函数.
(1) 函数 $f$ 不一致连续的充分必要条件是: 存在点列 $\left\{x^{(n)}\right\}$ 和 $\left\{y^{(n)}\right\}$ 和常数 $a$, 其中有 $\lim _{n \rightarrow \infty}|| x^{(n)}-y^{(n)} \|=0$, 但对 $n=1,2, \cdots$, 都有 $\left|F\left(x^{(n)}\right)-F\left(y^{(n)}\right)\right| \geq a$.
(2) 若 $F\left(x_1, x_2, \cdots, x_n\right)=f\left(x_1^2+x_2^2+\cdots+x_n^2\right), f$ 在 $[0,+\infty)$ 上连续可导, 若 $\lim _{t \rightarrow+\infty} f^{\prime}(t)=b \neq 0$, 证明: $F$ 在 $\mathbb{R}^n$ 上不一致连续.
如果实系数多项式 $f(x)$ 满足: $f\left(2 x^2+1\right)=2[f(x)]^2+1,(\forall x \in \mathbb{R}), f(0)=0 .$
证明: $f(x) \equiv x,(\forall x \in \mathbb{R})$.
设 $A$ 是 $n$ 阶实矩阵,且 $A^2=E$ ,证明:
(1) $r(A+E)+r(A-E)=n$.
(2) $A$ 与对角矩阵相似.
(3) $\mathbb{R}^{n \times n}=V_1 \oplus V_2$ ,其中
$$
\begin{aligned}
& V_1=\left\{\boldsymbol{X} \in \mathbb{R}^{n \times n} \mid(A+E) X=0\right\}, \\
& V_2=\left\{\boldsymbol{X} \in \mathbb{R}^{n \times n} \mid(A-E) \boldsymbol{X}=\mathbf{0}\right\}
\end{aligned}
$$
计算行列式 $D=\left|\begin{array}{llll}1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 0 \\ 0 & 2 & 1 & 2 \\ 1 & 0 & 2 & 1\end{array}\right|$ 的值
已知矩阵 $A=\left(\begin{array}{ccc}2 & 1 & -3 \\ 1 & 2 & -2 \\ -1 & -1 & 2\end{array}\right)$, 求矩阵 $A$ 的逆矩阵.
设 $a b c \neq 0$, 求下列行列式的值:
$$
|A|=\left|\begin{array}{lll}
a+b & a^{-1}+b^{-1} & (a+b)^2+\left(a^{-1}+b^{-1}\right)^2 \\
b+c & b^{-1}+c^{-1} & (b+c)^2+\left(b^{-1}+c^{-1}\right)^2 \\
c+a & c^{-1}+a^{-1} & (c+a)^2+\left(c^{-1}+a^{-1}\right)^2
\end{array}\right| .
$$
设 $n$ 阶行列式 $|\boldsymbol{A}|$ 的第 $(i, j)$ 元素 $a_{i j}=\mathrm{C}_{n i}^j(1 \leq i, j \leq n)$, 试求 $|\boldsymbol{A}|$的值.
设 $n$ 阶三对角矩阵
$$
\boldsymbol{A}=\left(\begin{array}{ccccc}
2 a & 1 & & & \\
a^2 & 2 a & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & 2 a & 1 \\
& & & a^2 & 2 a
\end{array}\right),
$$
其中 $a \neq 0$. 请用初等变换法求 $\boldsymbol{A}^{-1}$.