科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

yan12

数学

一、单选题 (共 9 题,每小题 5 分,共 50 分,每题只有一个选项正确)
下列数项级数哪个发散?
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ $\text{B.}$ $\sum_{n=1}^{\infty} \sin \frac{\pi}{2^n}$ $\text{C.}$ $\sum_{n=1}^{\infty} \ln \frac{n^2+1}{n^2}$ $\text{D.}$ $\sum_{n=1}^{\infty} \frac{3^n n !}{n^n}$


设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则下列级数绝对收敛的是
$\text{A.}$ $\sum_{n=1}^{\infty} \frac{u_n}{n}$ $\text{B.}$ $\sum_{n=1}^{\infty} \frac{u_n^2}{n}$ $\text{C.}$ $\sum_{n=1}^{\infty}\left(u_{n+1}-u_n\right)$ $\text{D.}$ $\sum_{n=1}^{\infty}\left(u_n\right)^n$


设函数 $f(x)=\left\{\begin{array}{cc}x, & 0 \leqslant x \leqslant 1, \\ -x, & 1 < x \leqslant 2,\end{array}\right.$ 的正弦级数与余弦级数的和函数分别为 $S_1(x)$ 与 $S_2(x)$ $(-\infty < x < +\infty)$, 则 $S_1(6)+S_2(-3)=$
$\text{A.}$ -2 $\text{B.}$ 0 $\text{C.}$ 1 $\text{D.}$ 2


设 $p$ 为常数, 若级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p} \arctan \frac{1}{\sqrt{n}}$ 条件收剑, 则 $p$ 的取值范围是
$\text{A.}$ $\left(0, \frac{1}{2}\right]$. $\text{B.}$ $\left(-\frac{1}{2}, \frac{1}{2}\right]$. $\text{C.}$ $(0,1)$. $\text{D.}$ $\left(-\frac{1}{2}, 1\right)$.


设幂级数 $\sum_{n=1}^{\infty} a_n(x-1)^n$ 在 $x=3$ 处条件收敛,则级数 $\sum_{n=1}^{\infty} \frac{a_n}{2^n}(x+1)^n$ 在 $x=-3$ 处
$\text{A.}$ 绝对收敛 $\text{B.}$ 条件收敛 $\text{C.}$ 发散 $\text{D.}$ 敛散性不确定


下列结论正确的是
$\text{A.}$ 若 $\sum a_n x^n$ 的收敛半径为 $R$ ,则 $\sum\left(a_n x^n\right)^{\prime}$ (导数)的收敛半径也是 $R$ $\text{B.}$ 若 $f(x)$ 在 $x=x_0$ 有任意阶导数,则有$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_0\right)}{n!}\left(x-x_0\right)^n $ $\text{C.}$ 若 $\sum a_n x^n$ 的收敛半径为 $R$, 则 $\lim _{n \rightarrow \infty}\left|\frac{a_n}{a_{n+1}}\right|=R$ $\text{D.}$ 设 $\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos n x+b_n \sin n x\right)$ 是周期为 $2 \pi$ 的函数 $f(x)$的傅里叶级数,则在 $f(x)$ 的定义域内,有 $ f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos n x+b_n \sin n x\right) $


设函数 $f(x)$ 是 $(-\infty, \infty)$ 上以 $2 \pi$ 为周期的周期函数,且在区间 $(0,2 \pi]$ 上有 $f(x)=x^2(0 < x \leq 2 \pi)$ ,则 $f(x)$ 的傅里叶系数中 $a_0$ 的值为
$\text{A.}$ $\frac{2 \pi^2}{3}$ $\text{B.}$ $\frac{4 \pi^2}{3}$ $\text{C.}$ $\frac{8 \pi^2}{3}$ $\text{D.}$ $\frac{10 \pi^2}{3}$


设函数 $f(x)=\left\{\begin{array}{ll}x, & 0 \leq x < \frac{1}{2}, \\ 1, & \frac{1}{2} \leq x \leq 1\end{array}\right.$ 的正弦级数 $\sum_{n=1}^{+\infty} b_n \sin n \pi x$的和函数为 $S(x)$ ,其中
$$
b_n=2 \int_0^1 f(x) \sin n \pi x \mathrm{~d} x(n=1,2, \cdots),
$$

则 $S\left(\frac{7}{2}\right)$ 和 $S(7)$ 的值分别为
$\text{A.}$ $\frac{3}{4}, 0$ $\text{B.}$ $-\frac{3}{4}, 0$ $\text{C.}$ $\frac{3}{4}, 1$ $\text{D.}$ $-\frac{3}{4}, 1$


已知函数 $f(x)=x^2, 0 \leq x \leq 1$ ,记 $S(x)=\sum_{n=1}^{\infty} b_n \sin n \pi x$ ,其中 $b_n=2 \int_0^1 f(x) \sin n \pi x \mathrm{~d} x(n=1,2, \cdots)$ ,则当 $x \in(1,2)$ 时, $S(x)=(\quad)$
$\text{A.}$ $x^2$ $\text{B.}$ $-x^2$ $\text{C.}$ $(x-2)^2$ $\text{D.}$ $-(x-2)^2$


二、填空题 (共 10 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
幂级数 $\sum_{n=0}^{\infty} \frac{1}{(2 n+1) !} x^{2 n+1}$ 在 $(-\infty,+\infty)$ 内的和函数 $S(x)=$



幂级数 $\sum_{n=1}^{\infty} \frac{2 n-1}{2^n} x^{2 n-2}$ 的收敛域为?



将幂级数 $\sum_{n=1}^{\infty}(-1)^n \frac{n}{2^n}(x-4)^{n-1}$ 展开为 $x$ 的幂级数为



极 限 $\lim _{n \rightarrow \infty}\left[\frac{\sec \frac{1}{n}}{n+1}+\frac{\sec \frac{2}{n}}{\left(n^2+1\right)^{\frac{1}{2}}}+\cdots+\frac{\sec \frac{n}{n}}{\left(n^n+1\right)^{\frac{1}{n}}}\right]=$



给定三个幂级数 $u=1+\frac{x^3}{3!}+\frac{x^6}{6!}+\cdots$
$$
v=x+\frac{x^4}{4!}+\frac{x^7}{7!}+\cdots, w=\frac{x^2}{2!}+\frac{x^5}{5!}+\frac{x^8}{8!}+\cdots $$

则 $u^3+v^3+w^3-3 u v w-1=$



幂级数 $\sum_{n=1}^{\infty} \frac{(x-1)^{n+1}}{3^n}$ 的收敛域为



函数 $\cos x$ 在 $x=\frac{\pi}{2}$ 处的幂级数展开为



幂级数 $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2 k-1)!} x^{2 k}$ 的和函数 $S(x)=$



$\int_0^1 x\left(1-\frac{x^2}{1!}+\frac{x^4}{2!}-\frac{x^6}{3!}+\cdots\right) \mathrm{d} x=$



已知 $f(x)=x^2-x, 0 \leq x \leq 1$, 记 $S(x)=\sum_{n=1}^{\infty} b_n \sin n \pi x$ ,其中 $b_n=2 \int_0^1 f(x) \sin n \pi x \mathrm{~d} x, n=1,2, \cdots$ ,则当 $x \in(1,2)$ 时, $S(x)=$



三、解答题 ( 共 21 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 2^n}$ 的和.



 

设 $a_n=\left(1-\frac{2 \ln (\ln n)}{n}\right)^n$, 判断级数 $\sum_{n=2}^{\infty} a_n$ 的敛散性.



 

(I) 求 $y=x \sin x$ 在 $[0, n \pi]$ ( $n$ 为正整数)上与 $x$ 轴所围的面积 $A_n$;
(II) 在(I)的基础上, 求幕级数 $\sum_{n=1}^{\infty} \frac{A_n}{2^n} x^n$ 的收敛域及和函数.



 

设正数列 $\left\{a_n\right\}$ 满足
$$
a_n=\frac{a_{n+1}^2}{n}+a_{n+1},(n=1,2,3, \cdots) .
$$

计算极限 $\lim _{n \rightarrow \infty} a_n \cdot \ln n$.



 

按照 $p$ 的范围来说明级数
$$
\sum_{n=1}^{\infty}\left[\frac{1}{n^p}-\ln \left(1+\frac{1}{n^p}\right)\right],(p>0)
$$

的收敛性.



 

讨论级数 $\sum_{n=0}^{\infty} \int_0^1(-1)^n(1-x) \cdot x^n \mathrm{~d} x$ 的收敛性并计算其和.



 

设函数 $f_n(x)=\frac{1}{n+1} x-\arctan x$, 其中 $n$ 为正整数. 证明:
(I) 方程 $f_n(x)=0$ 存在唯一正实根 $x_n$;
(II) 当 $p>2$ 时,级数 $\sum_{n=1}^{\infty} \frac{1}{x_n^p}$ 收敛.



 

请将函数 $y=x \ln (1+x)$ 展开成 $x$ 的幂级数



 

求幂级数 $\sum_{n=2} \frac{n}{n^2-1} x^n$ 的收敛域及和函数.



 

已知正切函数的泰勒展开式为: $\tan x=x+\frac{1}{3} x^3+\frac{2}{15} x^5+o\left(x^5\right)$
计算 $I=\lim _{x \rightarrow 0} \frac{\left[\tan \left(x+\frac{\pi}{4}\right)\right]^{\frac{1}{x}}-e^2\left(1+\frac{4}{3} x^2\right)}{x^4}$



 

设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $(-\infty,+\infty)$ 内收敛, 其和函数 $y(x)$ 满足 $x y^{\prime \prime}+(1+x) y^{\prime}+2 y=0$, $y(0)=-1, y^{\prime}(0)=2$.
( I ) 证明: $a_{n+1}=-\frac{(n+2)}{(n+1)^2} a_n, n=0,1, \cdots$;
(II) 求 $y(x)$ 的表达式.



 

设数列 $\left\{a_n\right\}$ 满足 $a_0=1, a_1=0, a_{n+1}=2 a_{n-1}-a_n(n=1,2,3, \cdots), S(x)$ 是幂级数 $\sum_{n=0}^{\infty} \frac{a_n}{n!} x^n$ 的和函数. 求 $S(x)$ 与 $a_n$ 的表达式.



 

设 $0 < p \leqslant 1, x_1>0, a>0, b>0, x_{n+1}=a+\frac{b}{x_n^p}, n \in \mathbb{N}$.证明数列 $\left\{x_n\right\}$ 收敛.



 

证明
$$
\sqrt{7}, \sqrt{7-\sqrt{7}}, \sqrt{7-\sqrt{7+\sqrt{7}}}, \sqrt{7-\sqrt{7+\sqrt{7-\sqrt{7}}}}
$$
收敛并求其值



 

(上海交通大学 1991 年竞赛题) 设 $x_1=1, x_2=2$, 且
$x_{n+2}=\sqrt{x_{n+1} \cdot x_n}(n=1,2, \cdots)$
求 $\lim _{n \rightarrow \infty} x_n$



 

(I) 求 $y=x \sin x$ 在 $[0, n \pi]$ ( $n$ 为正整数)上与 $x$ 轴所围的面积 $A_n$;
(II) 在(I)的基础上, 求幂级数 $\sum_{n=1}^{\infty} \frac{A_n}{2^n} x^n$ 的收敛域及和函数.



 

设 $x>0$ ,试讨论级数
$$
1-\frac{1}{2^x}+\frac{1}{3}-\frac{1}{4^x}+\frac{1}{5}-\frac{1}{6^x}+\cdots
$$

的敛散性.



 

设 $f(x)=\frac{x-1}{4-x}$ ,求函数 $f(x)$ 关于 $x-1$ 的幂级数展开式,并求 $f^{(n)}(1)$.



 

(1) 将函数 $f(x)=x \cos x^2$ 展开成麦克劳林级数;
(2) 求数值级数 $\frac{1}{2}-\frac{1}{6} \cdot \frac{1}{2!}+\frac{1}{10} \cdot \frac{1}{4!}-\frac{1}{14} \cdot \frac{1}{6!}+\cdots$ 的和.



 

求级数 $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 4^n}$ 的收敛域与和函数.



 

求幂级数 $\sum_{n=1}^{+\infty}(-1)^{n-1} \frac{x^{2 n+1}}{n(2 n+1)}$ 的收敛域与和函数.



 

试卷二维码

分享此二维码到群,让更多朋友参与